## Electronic Supplementary Information – Defect formation and ambivalent effects on electrochemical performance in layered sodium titanate $Na_2Ti_3O_7$

Yong-Chol Pak, Chung-Hyok Rim, Suk-Gyong Hwang, Kum-Chol Ri, Chol-Jun Yu\*

Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University, Pyongyang, PO Box 76, Democratic People's Republic of Korea

Table S1. Lattice constants (a, b, c) and lattice angle  $(\beta, \alpha = \gamma = 90^\circ)$ , unit cell volume (Vol) and band gap  $(E_g)$  with each relative error (err) for Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> unit cell, according the value of Hubbard parameter U with PBE+vdW functional and different XC functional of PBEsol with and without vdW

| unificient AC functional of r besof with and without vuw. |        |         |         |        |         |              |         |               |         |                       |         |            |                 |
|-----------------------------------------------------------|--------|---------|---------|--------|---------|--------------|---------|---------------|---------|-----------------------|---------|------------|-----------------|
| XC                                                        | U (eV) | ) a (Å) | err (%) | b (Å)  | err (%) | <i>c</i> (Å) | err (%) | $\beta$ (deg) | err (%) | Vol (Å <sup>3</sup> ) | err (%) | $E_g$ (eV) | $\Delta E (eV)$ |
| PBE+                                                      | 0.0    | 9.1227  | -0.04   | 3.7876 | -0.32   | 8.5389       | -0.29   | 101.944       | 0.34    | 288.6634              | -0.90   | 3.15       | -0.58           |
| vdW                                                       | 0.5    | 9.1277  | 0.02    | 3.7944 | -0.14   | 8.5416       | -0.25   | 101.925       | 0.33    | 289.4444              | -0.63   | 3.19       | -0.54           |
|                                                           | 1.0    | 9.1336  | 0.08    | 3.8015 | 0.05    | 8.5440       | -0.23   | 101.915       | 0.32    | 290.6667              | -0.21   | 3.24       | -0.49           |
|                                                           | 1.5    | 9.1397  | 0.15    | 3.8087 | 0.24    | 8.5462       | -0.20   | 101.905       | 0.31    | 291.0952              | -0.07   | 3.29       | -0.44           |
|                                                           | 2.0    | 9.1469  | 0.23    | 3.8160 | 0.43    | 8.5479       | -0.18   | 101.896       | 0.30    | 291.9525              | 0.23    | 3.34       | -0.39           |
|                                                           | 2.2    | 9.1483  | 0.24    | 3.8191 | 0.51    | 8.5496       | -0.16   | 101.890       | 0.29    | 292.3012              | 0.35    | 3.35       | -0.38           |
|                                                           | 2.4    | 9.1510  | 0.27    | 3.8221 | 0.59    | 8.5506       | -0.15   | 101.885       | 0.29    | 292.6576              | 0.47    | 3.37       | -0.36           |
|                                                           | 2.6    | 9.1537  | 0.30    | 3.8252 | 0.67    | 8.5519       | -0.13   | 101.881       | 0.28    | 293.024               | 0.60    | 3.39       | -0.34           |
|                                                           | 2.8    | 9.1571  | 0.34    | 3.8268 | 0.71    | 8.5563       | -0.08   | 101.868       | 0.27    | 293.4245              | 0.73    | 3.44       | -0.29           |
|                                                           | 3.0    | 9.1598  | 0.37    | 3.8297 | 0.79    | 8.5573       | -0.07   | 101.871       | 0.27    | 293.7643              | 0.85    | 3.46       | -0.27           |
|                                                           | 3.2    | 9.1627  | 0.40    | 3.8328 | 0.87    | 8.5589       | -0.05   | 101.864       | 0.27    | 294.1534              | 0.98    | 3.48       | -0.25           |
|                                                           | 3.4    | 9.1655  | 0.43    | 3.8359 | 0.95    | 8.5600       | -0.04   | 101.861       | 0.26    | 294.5247              | 1.11    | 3.50       | -0.23           |
|                                                           | 3.6    | 9.1686  | 0.47    | 3.8390 | 1.03    | 8.5607       | -0.03   | 101.853       | 0.26    | 294.8980              | 1.24    | 3.52       | -0.21           |
|                                                           | 3.8    | 9.1717  | 0.50    | 3.8421 | 1.12    | 8.5620       | -0.02   | 101.848       | 0.25    | 295.2843              | 1.37    | 3.54       | -0.19           |
|                                                           | 4.0    | 9.1748  | 0.53    | 3.8453 | 1.20    | 8.5633       | 0.00    | 101.843       | 0.25    | 295.6789              | 1.51    | 3.56       | -0.17           |
| PBE                                                       | 3.0    | 9.2754  | 1.64    | 3.8503 | 1.33    | 8.6837       | 1.40    | 101.685       | 0.09    | 303.6946              | 4.26    | 3.39       | -0.34           |
| PBEsol                                                    | 3.0    | 9.1521  | 0.29    | 3.8227 | 0.61    | 8.5855       | 0.26    | 101.740       | 0.14    | 294.0872              | 0.96    | 3.42       | -0.31           |
| PBEsol+                                                   | 3.0    | 9.0453  | -0.88   | 3.8004 | 0.02    | 8.4695       | -1.10   | 101.891       | 0.29    | 284.8992              | -2.19   | 3.49       | -0.24           |
| vdW                                                       |        |         |         |        |         |              |         |               |         |                       |         |            |                 |
| Exp. <sup>a</sup>                                         |        | 9.1260  |         | 3.7997 |         | 8.5634       |         | 101.593       |         |                       |         | 3.73       |                 |
| Exp. <sup>b</sup>                                         |        | 9.1281  |         | 3.8022 |         | 8.5625       |         | 101.603       |         | 291.29                |         | 3.51       |                 |
| <sup><math>a</math></sup> Ref [1]                         |        |         |         |        |         |              |         |               |         |                       |         |            |                 |

<sup>&</sup>lt;sup>b</sup>Ref. [2]

Table S2. Pseudopotential file name, valence electron configuration and total energy of isolated atoms, phase, total energy of elementary substances, and binding energy per atom.  $E_{\text{bind}} = (E_{\text{tot}}^{\text{sub}} - NE_{\text{tot}}^{\text{atom}})/N$ , where N is the number of atoms included in the elementary substance. Values in parenthesis are experimental ones [3].

| Element | Pseudopotential      | Configuration              | $E_{\rm tot}^{\rm atom}$ (Ry) | Phase | $E_{\rm tot}^{\rm sub}$ (Ry) | Ebind (eV/atom) |
|---------|----------------------|----------------------------|-------------------------------|-------|------------------------------|-----------------|
| Н       | H.pbe-van_ak.UPF     | $1s^{1}$                   | -0.91703472                   | gas   | -2.33054856                  | -3.3775         |
| 0       | O.pbe-van_ak.UPF     | $2s^22p^4$                 | -31.55407991                  | gas   | -63.85222829                 | -5.0618 (-5.12) |
| Li      | Li.pbe-s-van_ak.UPF  | $1s^2 2s^{0.95} 2p^{0.05}$ | -14.57961031                  | bcc   | -29.44901619                 | -1.9715         |
| Na      | Na.pbe-sp-van_ak.UPF | $2s^22p^63s^1$             | -96.04691566                  | bcc   | -192.30620110                | -1.4447         |
| Κ       | K.pbe-sp-van.UPF     | $3s^23p^64s^1$             | -57.13828878                  | bcc   | -114.42571753                | -1.0146         |
| Rb      | rb_pbe_v1.uspp.F.UPF | $4s^24p^65s^{0.5}$         | -53.09506539                  | bcc   | -106.32626483                | -0.9261         |
| Ti      | Ti.pbe-sp-van_ak.UPF | $3s^23p^64s^23d^2$         | -116.21833062                 | hcp   | -349.47942556                | -3.7390         |

<sup>\*</sup>Corresponding author: Chol-Jun Yu, Email: cj.yu@ryongnamsan.edu.kp

|                                |              |                  |                    | $E_{\rm form}$ ( | $eV/O_2)$ |
|--------------------------------|--------------|------------------|--------------------|------------------|-----------|
| Compound                       | Structure    | Space group      | $E_{\rm tot}$ (Ry) | Cal.             | Exp.      |
| Superoxide                     |              |                  |                    |                  |           |
| LiO <sub>2</sub>               | cubic        | $Fm\bar{3}m$     | -314.48820427      | -0.6165          | _         |
| NaO <sub>2</sub>               | cubic        | $Fm\bar{3}m$     | -640.88614287      | -2.9417          |           |
|                                | orthorhombic | Pnnm             | -320.46159754      | -3.0677          |           |
|                                | cubic        | Pa3              | -640.90653854      | -3.0110          |           |
|                                | hexagonal    | R3m              | -480.64680752      | -2.8609          | -2.6950   |
| KO <sub>2</sub>                |              | C12c1            | -485.13970635      | -2.9911          |           |
| -                              |              | F4mmm            | -485.24565685      | -3.3515          |           |
|                                |              | I4mmm            | -242.62272452      | -3.3508          | -2.9508   |
| RbO <sub>2</sub>               | cubic        | $Fm\bar{3}m$     | -233.89551457      | 0.9198           |           |
| -                              |              | I4mmm            | -234.52715354      | -3.3772          | -2.8866   |
| Peroxide                       |              |                  |                    |                  |           |
| $Li_2O_2$                      | hexagonal    | $P6_3/mmc$       | -187.60021477      | -6.7874          | -6.5697   |
| $Na_2O_2$                      | hexagonal    | P62m             | -769.65319364      | -5.3421          | -5.2916   |
| $K_2 \tilde{O}_2$              | -            | Cmca             | -714.65068764      | -5.2345          | -5.1176   |
| $R\tilde{b}_2\tilde{O}_2$      |              | Immm             | -341.12271964      | -5.2092          | -4.8887   |
| Oxide                          |              |                  |                    |                  |           |
| Li <sub>2</sub> O              | cubic        | Fm3m             | -247.43533953      | -13.1624         |           |
| -                              | hexagonal    | R3mh             | -185.57950678      | -13.1896         | -12.3854  |
| Na <sub>2</sub> O              | cubic        | Fm3m             | -898.28499053      | -9.2229          | -8.5801   |
| K <sub>2</sub> Ō               | cubic        | $Fm\bar{3}m$     | -586.55663718      | -7.8187          | -7.4884   |
| Rb <sub>2</sub> O              | cubic        | Fm3 <del>m</del> | -554.11294202      | -7.5065          | -7.0224   |
| TiŌ                            | cubic        | Fm3m             | -595.0146926       | -9.1000          |           |
|                                | monoclinic   | C2/m             | -743.8754339       | -9.6827          |           |
|                                |              |                  | -743.8779393       | -9.6964          | -10.7655  |
| TiO <sub>2</sub>               | monoclinic   | C2/m             | -724.0974288       | -9.2382          |           |
| -                              | tetragonal   | $I4_1/amd$       | -362.0508892       | -9.2530          |           |
|                                | monoclinic   | $P2_1/c$         | -724.0739579       | -9.1583          |           |
|                                | tetragonal   | $P4_2/mnm$       | -362.0443419       | -9.2084          |           |
|                                | orthorhombic | Pbca             | -1448.2300363      | -9.2980          |           |
|                                | orthorhombic | Pbcn             | -724.1290851       | -9.3458          | -9.7774   |
| Ti <sub>2</sub> O <sub>3</sub> | hexagonal    | R3c              | -659.7025193       | -9.8563          | -10.5018  |
| Ti <sub>3</sub> O <sub>5</sub> | monoclinic   | C2/c             | -1021.8435757      | -9.8604          |           |
| 5 5                            | monoclinic   | C2/m             | -1021.7055992      | -9.4849          |           |
|                                | orthorhombic | Cmcm             | -1021.6864610      | -9.4328          | -10.1892  |

Table S3. Crystal system, space group, total energy, and formation energy per O<sub>2</sub> of binary metal oxides.  $E_{\text{form}}(M_aO_b) = [E_{\text{tot}}(M_aO_b) - aE_{\text{tot}}(M) - b/2E_{\text{tot}}(O_2)] \cdot 2/b$ , where  $E_{\text{tot}}(M)$  is the total energy of elementary metal per atom and  $E_{\text{tot}}(O_2)$  is the total energy of isolated O<sub>2</sub> molecule. Experimental values are from Ref. [4].

Table S4. Crystal system with space group, total energy, and formation energy of sodium oxides calculated using oxygen gas and sodium metal as two end materials, and corrected formation energy.  $E_{\text{form}} = \frac{1}{a+b}E_{\text{tot}}(M_aO_b) - [xE_{\text{tot}}(M) - (1-x)E_{\text{tot}}(O_2)/2]$ , where x = a/(a+b). The correcting term  $E_{\text{corr}}$  is determined from  $E_{\text{corr}}^0$  shown in Fig. S1 by using the relation  $E_{\text{corr}} = E_{\text{corr}}^0 (1-x)/2$ , and then, the corrected formation energy is obtained by  $E_{\text{form}}^{\text{corr}} = E_{\text{form}} - E_{\text{corr}}$ .

| the relation D <sub>con</sub> (1 3)/2, and then, the corrected formation energy is betained by D <sub>form</sub> D <sub>form</sub> |                                                                                                                                                                      |                  |                  |                          |                                                                                                                           |                                                                          |                               | L'corr.                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|
| $M_a O_b$                                                                                                                          | phase                                                                                                                                                                | а                | b                | x = a/(a+b)              | $E_{tot}(M_aO_b)$ (Ry)                                                                                                    | $E_{\rm form}~({\rm eV})$                                                | $E_{\rm corr}~({\rm eV})$     | $E_{\rm form}^{\rm corr}$ (eV)                                          |
| O <sub>2</sub>                                                                                                                     | gas                                                                                                                                                                  | 0                | 2                | 0.0                      | -63.85222829                                                                                                              | 0.0000                                                                   |                               | 0.0000                                                                  |
| NaO <sub>3</sub>                                                                                                                   | orthorhombic (Imm2)                                                                                                                                                  | 1                | 3                | 1/4                      | -192.122132689                                                                                                            | -0.6486                                                                  |                               | -0.6486                                                                 |
| $NaO_2$                                                                                                                            | cubic $(Fm\bar{3}m)$                                                                                                                                                 | 1                | 2                | 1/3                      | -160.221535717                                                                                                            | -0.9806                                                                  | -0.1404                       | -0.8401                                                                 |
| _                                                                                                                                  | orthorhombic (Pnnm)                                                                                                                                                  |                  |                  |                          | -160.236595150                                                                                                            | -1.0489                                                                  |                               | -0.9084                                                                 |
|                                                                                                                                    | cubic (Pā3)                                                                                                                                                          |                  |                  |                          | -160.215602507                                                                                                            | -0.9537                                                                  |                               | -0.8132                                                                 |
|                                                                                                                                    | hexagonal $(R\bar{3}m)$                                                                                                                                              |                  |                  |                          | -160.230798769                                                                                                            | -1.0226                                                                  |                               | -0.8822                                                                 |
| $Na_2O_2$                                                                                                                          | hexagonal (P62m)                                                                                                                                                     | 2                | 2                | 1/2                      | -256.551064545                                                                                                            | -1.3355                                                                  | -0.0441                       | -1.2914                                                                 |
| Na <sub>2</sub> O                                                                                                                  | cubic $(Fm\bar{3}m)$                                                                                                                                                 | 2                | 1                | 2/3                      | -224.571247632                                                                                                            | -1.5372                                                                  | -0.0942                       | -1.4429                                                                 |
| Na                                                                                                                                 | cubic (bcc)                                                                                                                                                          | 1                | 0                | 1.0                      | -96.153100550                                                                                                             | 0.0000                                                                   |                               | 0.0000                                                                  |
| NaO <sub>2</sub><br>Na <sub>2</sub> O <sub>2</sub><br>Na <sub>2</sub> O<br>Na                                                      | cubic $(Fm\bar{3}m)$<br>orthorhombic $(Pnnm)$<br>cubic $(P\bar{a}3)$<br>hexagonal $(R\bar{3}m)$<br>hexagonal $(P\bar{6}2m)$<br>cubic $(Fm\bar{3}m)$<br>cubic $(bcc)$ | 1<br>2<br>2<br>1 | 2<br>2<br>1<br>0 | 1/3<br>1/2<br>2/3<br>1.0 | -160.221535717<br>-160.236595150<br>-160.215602507<br>-160.230798769<br>-256.551064545<br>-224.571247632<br>-96.153100550 | -0.9806<br>-1.0489<br>-0.9537<br>-1.0226<br>-1.3355<br>-1.5372<br>0.0000 | -0.1404<br>-0.0441<br>-0.0942 | -0.840<br>-0.9084<br>-0.8132<br>-0.8822<br>-1.2914<br>-1.4429<br>0.0000 |

| $a+b^{L}tot(\mathbf{w})$        | $I_a O_b$ [ $\lambda L_{tot}(IVI)$ (1 | $\lambda$ ) $L_{tot}$ | $(0_2)$ | 2], where $x = u/$ | (u + b).               |                           |
|---------------------------------|---------------------------------------|-----------------------|---------|--------------------|------------------------|---------------------------|
| $M_a O_b$                       | phase                                 | а                     | b       | x = a/(a+b)        | $E_{tot}(M_aO_b)$ (Ry) | $E_{\rm form}~({\rm eV})$ |
| 02                              | gas                                   | 0                     | 2       | 0.0                | -63.85222547           | 0.0000                    |
| TiO <sub>2</sub>                | monoclinic $(C2/m)$                   | 1                     | 2       | 0.3333             | -181.02435720          | -3.2039                   |
|                                 | tetragonal (I41/amd)                  |                       |         |                    | -181.02544461          | -3.2088                   |
|                                 | monoclinic $(P2_1/c)$                 |                       |         |                    | -181.01848948          | -3.1773                   |
|                                 | tetragonal (P4 <sub>2</sub> /mnm)     |                       |         |                    | -181.02217096          | -3.1940                   |
|                                 | orthorhombic (Pbca)                   |                       |         |                    | -181.02875453          | -3.2238                   |
|                                 | orthorhombic (Pbcn)                   |                       |         |                    | -181.03227127          | -3.2398                   |
| Ti <sub>9</sub> O <sub>17</sub> | triclinic $(P\overline{1})$           | 9                     | 17      | 0.3462             | -1597.07044234         | -3.2106                   |
| $Ti_8O_{15}$                    | triclinic $(P\overline{1})$           | 8                     | 15      | 0.3478             | -1416.03700819         | -3.2061                   |
| $Ti_7O_{13}$                    | triclinic $(P\overline{1})$           | 7                     | 13      | 0.3500             | -1235.00172357         | -3.1990                   |
| $Ti_6O_{11}$                    | monoclinic $(C2/m)$                   | 6                     | 11      | 0.3529             | -1053.94010619         | -3.1683                   |
| Ti <sub>5</sub> O <sub>9</sub>  | triclinic $(P\overline{1})$           | 5                     | 9       | 0.3571             | -872.93708920          | -3.1814                   |
| 5 1                             | triclinic $(P\overline{1})$           | 10                    | 18      |                    | -1745.91065854         | -3.1992                   |
| $Ti_4O_7$                       | triclinic $(P\overline{1})$           | 4                     | 7       | 0.3636             | -691.89925787          | -3.1586                   |
| Ti <sub>3</sub> O <sub>5</sub>  | monoclinic $(C2/c)$                   | 3                     | 5       | 0.3750             | -510.92178785          | -3.2214                   |
|                                 | monoclinic $(C2/m)$                   |                       |         |                    | -510.85279962          | -3.1041                   |
|                                 | orthorhombic (Cmcm)                   |                       |         |                    | -510.84323050          | -3.0878                   |
| $Ti_2O_3$                       | hexagonal $(R\bar{3}c)$               | 2                     | 3       | 0.4000             | -329.85125963          | -3.1063                   |
| TiŌ                             | monoclinic $(C2/m)$                   | 5                     | 5       | 0.5000             | -743.87793933          | -2.6108                   |
|                                 | monoclinic $(C2/m)$                   | 1                     | 1       | 0.5000             | -148.77508678          | -2.6074                   |
|                                 | cubic $(Fm\bar{3}m)$                  | 1                     | 1       | 0.5000             | -148.75367315          | -2.4617                   |
| Ti <sub>2</sub> O               | hexagonal ( $P\bar{3}m1$ )            | 2                     | 1       | 0.6667             | -265.22033661          | -1.6456                   |
| Ti <sub>3</sub> O               | hexagonal (P312)                      | 3                     | 1       | 0.7500             | -381.70674692          | -1.3046                   |
| 5                               | hexagonal $(P\bar{3}1c)$              |                       |         |                    | -381.70724216          | -1.3063                   |
| Ti <sub>6</sub> O               | hexagonal ( $P\bar{3}1m$ )            | 6                     | 1       | 0.8571             | -731.07077997          | -0.6813                   |
| Ti                              | hexagonal (hcp)                       | 1                     | 0       | 1.0                | -116.46569363          | 0.0000                    |
|                                 |                                       |                       |         |                    |                        |                           |

Table S5. Crystal system with space group, total energy, and formation energy of titanium oxides calculated using oxygen gas and titanium metal as two end materials.  $E_{\text{form}} = \frac{1}{a+b} E_{\text{tot}}(M_a O_b) - [x E_{\text{tot}}(M) - (1-x) E_{\text{tot}}(O_2)/2]$ , where x = a/(a+b).

Table S6. Oxygen chemical potential  $\Delta \mu_0$  (*T*, *p*) as increasing temperature *T* from 300 K to 1500 K with the experimental data of entropy *S*°, enthalpy difference  $H^\circ(T) - H^\circ(Tr)$ , and  $H^\circ(Tr) - H^\circ(0) = 0.0899$  eV available from Ref. [4], where the reference temperature is Tr = 298.15 K. Here,  $\Delta \mu_0$  (*T*, *p*) is evaluated at the pressure values of  $p = p_0 = 1$  atm and p = 0.2 atm, respectively.

| competative is $T = 298.15$ K. Here, $\Delta\mu_0(T, p)$ is evaluated at the pressure values of $p = p_0 = 1$ atm and $p = 0.2$ atm, respectively. |        |             |                                |              |                         |                 |              |                                         |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|--------------------------------|--------------|-------------------------|-----------------|--------------|-----------------------------------------|-----------------------------|
| Т                                                                                                                                                  | •      | $S^{\circ}$ | $H^{\circ}(T) - H^{\circ}(Tr)$ | $TS^{\circ}$ | $\Delta \mu_{\rm O}$ (7 | $(, p_{\circ})$ | $k_{\rm B}T$ | $\frac{1}{2}k_{\rm B}T\ln(p/p_{\circ})$ | $\Delta \mu_{\rm O} (T, p)$ |
| (°C)                                                                                                                                               | (K)    | (J/mol·K)   | (kJ/mol)                       | (kJ/mol)     | (kJ/mol)                | (eV)            | (eV)         | (eV)                                    | (eV)                        |
| 25                                                                                                                                                 | 298.15 | 205.148     | 0.000                          | 61.1649      | -26.2424                | -0.2718         | 0.0257       | -0.0207                                 | -0.2925                     |
| 26.85                                                                                                                                              | 300    | 205.330     | 0.054                          | 61.5990      | -26.4325                | -0.2738         | 0.0259       | -0.0208                                 | -0.2946                     |
| 126.85                                                                                                                                             | 400    | 213.873     | 3.026                          | 85.5492      | -36.9216                | -0.3824         | 0.0345       | -0.0277                                 | -0.4102                     |
| 226.85                                                                                                                                             | 500    | 220.695     | 6.085                          | 110.3475     | -47.7913                | -0.4950         | 0.0431       | -0.0347                                 | -0.5297                     |
| 326.85                                                                                                                                             | 600    | 226.454     | 9.245                          | 135.8724     | -58.9737                | -0.6108         | 0.0517       | -0.0416                                 | -0.6524                     |
| 426.85                                                                                                                                             | 700    | 231.470     | 12.500                         | 162.0290     | -70.4245                | -0.7294         | 0.0603       | -0.0485                                 | -0.7780                     |
| 526.85                                                                                                                                             | 800    | 235.925     | 15.838                         | 188.7400     | -82.1110                | -0.8505         | 0.0689       | -0.0555                                 | -0.9059                     |
| 626.85                                                                                                                                             | 900    | 239.937     | 19.244                         | 215.9433     | -94.0097                | -0.9737         | 0.0776       | -0.0624                                 | -1.0361                     |
| 726.85                                                                                                                                             | 1000   | 243.585     | 22.707                         | 243.5850     | -106.0990               | -1.0989         | 0.0862       | -0.0693                                 | -1.1683                     |
| 826.85                                                                                                                                             | 1100   | 246.930     | 26.217                         | 271.6230     | -118.3630               | -1.2259         | 0.0948       | -0.0763                                 | -1.3022                     |
| 926.85                                                                                                                                             | 1200   | 250.019     | 29.768                         | 300.0228     | -130.7874               | -1.3546         | 0.1034       | -0.0832                                 | -1.4378                     |
| 1026.85                                                                                                                                            | 1300   | 252.888     | 33.352                         | 328.7544     | -143.3612               | -1.4849         | 0.1120       | -0.0901                                 | -1.5750                     |
| 1126.85                                                                                                                                            | 1400   | 255.568     | 36.968                         | 357.7952     | -156.0736               | -1.6165         | 0.1206       | -0.0971                                 | -1.7136                     |
| 1226.85                                                                                                                                            | 1500   | 258.081     | 40.611                         | 387.1215     | -168.9153               | -1.7495         | 0.1293       | -0.1040                                 | -1.8536                     |

Table S7. Oxygen chemical potential  $\Delta \mu_0$  (*T*, *p*) as decreasing oxygen partial pressure *p* from 10<sup>10</sup> atm to 10<sup>-20</sup> atm at temperatures of *T* = 1100 K and 700 K, respectively.

|                  |            |                                         | 1                           |         |  |
|------------------|------------|-----------------------------------------|-----------------------------|---------|--|
| p                |            | $\frac{1}{2}k_{\rm B}T\ln(p/p_{\circ})$ | $\Delta \mu_{\rm O} (T, p)$ |         |  |
|                  |            |                                         | T = 1100  K                 | 700 K   |  |
| (Pa)             | (atm)      | (eV)                                    | (eV)                        | (eV)    |  |
| 10 <sup>15</sup> | $10^{10}$  | 1.0913                                  | -0.1346                     | 0.3619  |  |
| $10^{12}$        | $10^{7}$   | 0.7639                                  | -0.4620                     | 0.0345  |  |
| $10^{9}$         | $10^{4}$   | 0.4365                                  | -0.7894                     | -0.2929 |  |
| $10^{6}$         | $10^{1}$   | 0.1091                                  | -1.1168                     | -0.6203 |  |
| $10^{3}$         | $10^{-2}$  | -0.2183                                 | -1.4442                     | -0.9477 |  |
| $10^{0}$         | $10^{-5}$  | -0.5457                                 | -1.7716                     | -1.2751 |  |
| $10^{-3}$        | $10^{-8}$  | -0.8731                                 | -2.0990                     | -1.6025 |  |
| $10^{-6}$        | $10^{-11}$ | -1.2005                                 | -2.4264                     | -1.9299 |  |
| $10^{-9}$        | $10^{-14}$ | -1.5278                                 | -2.7538                     | -2.2573 |  |
| $10^{-12}$       | $10^{-17}$ | -1.8552                                 | -3.0812                     | -2.5847 |  |
| $10^{-15}$       | $10^{-20}$ | -2.1826                                 | -3.4086                     | -2.9121 |  |



Figure S1. The calculated formation enthalpy versus experimental formation enthalpy for alkali metal oxides and titanium oxides. For alkali metal oxides, systematic differences are found, giving the correction energy for oxide formation energy  $E_{\text{oxd}}^{\text{cor}} = 0.42, 0.18$ , and 0.56 eV per O<sub>2</sub> for superoxide, peroxide and oxide, respectively.



Figure S2. Convex hull plot of formation energies of the binary Na–O system. Red-colored dashed line is for the original formation energies, and black-colored solid line is for the formation energies corrected with  $E_{oxd}^{cor}$ .



Figure S3. Convex hull plot of formation energies of the binary Ti–O system.



Figure S4. Calculated formation energies of intrinsic point defects with different sets of atomic chemical potentials at the corner points of stable polygon, B, C, D, E, and G.



## References

- H. Pan, X. Lu, X. Yu, Y.-S. Hu, H. Li, X.-Q. Yang, L. Chen, Sodium Storage and Transport Properties in Layered Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> for Room-Temperature Sodium-Ion Batteries, Adv. Energy Mater. 3, 1186–1194 (2013).
- [2] A. A. Araújo-Filho, F. L. R. Silva, A. Righi, M. B. da Silva, B. P. Silva, E. W. S. Caetano, V. N. Freire, Structural, Electronic and Optical Properties of Monoclinic Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> from Density Functional Theory Calculations: a Comparison with XRD and Optical Absorption Measurements, J. Solid State Chem. 250, 68–74 (2017).
- [3] M. W. Chase, Jr., *NIST-JANAF Themochemical Tables*, Fourth Edition (J. Phys. Chem. Ref. Data, Monograph 9, 1998) pp. 11951.
- [4] *CRC Handbook of Chemistry and Physics*, Internet Version, D. R. Lide Ed.; CRC Press: http://www.hbcpnetbase.com, Boca Raton, FL (2005).