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S1 Extrapolation of calorimetric data

The barocaloric behaviour at low pressures is estimated by extrapolating the high-pressure heat flow
peak of 1000 bar to lower pressures. As is shown in table S1, the isothermal entropy change, given by
dS =

∫
dQ/T dT , is roughly constant with pressure. Therefore, the extrapolated heat flow peaks were

scaled to account for the decrease in phase transition enthalpy at low temperatures and ensure that
the isothermal entropy change remains the same. Thanks to the scaling, it does not matter which heat
flow peak is chosen for extrapolation, so the 1000 bar peak was chosen arbitrarily. The extrapolated
heat flow peaks and scaled entropy changes are shown in figure S1.

P (bar) ∆Siso (JK−1kg−1)
900 120.44
925 119.58
950 119.50
975 119.94

1000 121.59

Table S1: Maximum isothermal entropy changes at high pressure. The entropy changes do not show
any obvious pressure dependence.

Figure S1 shows that the width of the measured heat flow peaks increases with pressure. While
this won’t affect the maximum isothermal entropy change, it might affect the temperature range of
unsaturated isothermal entropy changes, as it changes the steepness of the slopes in figures S1c and
d. However the main result of this work, i.e. fully saturated reversible effects at 200 bar, will remain
unchanged.

It is worthwhile to note that the shape of the heat flow peaks might depend on many different
factors. For the present measurements, the increased broadening of the peaks with pressure might
be accounted for by realising that different parts of the material (such as the bulk and edges) can
respond slightly differently to temperature, causing a broadening of the heat flow peaks. At higher
pressures, this effect might be amplified, leading to increased broadening with pressure. In general
however, the shape of the heat flow peaks will also depend on the heating rate, so it is hard to make
general claims about the shape of the peaks. Finally, since these measurements are quasi-direct, it is
difficult to say what a heat flow peak will look like in a real application, where heat flow is produced
by pressurisation rather than changing temperature.
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Figure S1: Details of the extrapolation of calorimetric data. (a) The phase diagram as deduced from
heat-flow measurements: solid circles are experimental data points, open squares are
extrapolated datapoints (based on a linear fit to the experimental data) at which the low-
temperature barocaloric behaviour will be estimated. (b) Heat flow data at low pressures
have been simulated by shifting the heat flow peaks from the high-pressure measurements
to the predicted phase transition temperatures in (a). Solid lines are experimental data
and the dotted lines are simulated. (c) The heat flow peaks are integrated and each
heat flow integral for p > 0 is then subtracted off the heat flow integral for p = 0. The
resulting isothermal entropy change entropy change ∆Sit(qd) for 0→ p and p→ 0 was
scaled to correct for the increase in phase transition enthalpy at high temperatures. (d)
Reversible entropy change ∆Srev for 0→ p and p→ 0 deduced from (c). The simulated
data predict that it is possible to get reversible barocaloric effects for pressures < 100 bar,
with saturation already at < 200 bar.
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S2 Inelastic neutron scattering

Figure S2: Dispersion curve in adamantane’s ordered tetragonal phase, measured by single-crystal
inelastic neutron scattering at T = 220 K and P = 1 kbar.

Figure S3: Experimental 1-phonon density of states. There is clear softening in the high-temperature
cubic phase (220 K, ambient P) and in the tetragonal phase, the modes are stiffer at the
(T=220 K, P=1 kbar) phase point than at the (T=200 K, P=ambient) phase point, likely
because high pressure restricts the molecules’ movements.
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Figure S4: Acoustic modes in the experimental dispersion curves in (a) the tetragonal phase at low
temperature, (b) the tetragonal phase at high pressure and (c) the cubic phase. The acoustic
modes have been fitted to the eye with a sine wave of variable amplitude. The image in (d)
is the cubic phase, with the fits of all phases superimposed. It shows (1) that the acoustic
modes have softened in the cubic phase and (2) that the modes are stiffer in the tetragonal
phase at high pressure (b) than at low temperature (a). The latter is consistent with the
density of states (figure S3).
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S3 Quasielastic neutron scattering under high pressure

S3.1 Results

The model describing the quasielastic signal in adamantane’s high-temperature phase has been
uncovered by Bee et al. 1 and attributed to C4 rotational jumps. In the analysis of the pressure
data collected in this work, this rotational model is therefore used to fit the data. The free model
parameters are τC4 (the average time between jumps), f (empirical fitting parameter to account for the
fraction of rotating molecules), an arbitrary scaling factor C(Q) (which accounts, among others, for
the Debye-Waller factor) and a background term B(Q,ω) that is assumed to be linear in the energy
ω . The full model is given below.

Figure S5: Quasi-elastic broadening in adamantane’s disordered cubic phase is suppressed under
pressure. Data is collected at T = 300 K. The spectra have been summed over all
Å-1< Q <2 Å-1. The experimental data are represented by dots and the corresponding fit
by lines. (The fits itself contain noise due to convolution with the experimental resolution.)

The resulting fit to the pressure data is shown in figure S5. Here the spectra have been summed over
all momentum transfer Q, to increase the signal-to-noise ratio and aid visualisation. The quasielastic
broadening is suppressed by pressure. This is the result of two changing model parameters in the
fit: both the frequency of C4 jumps and the fraction of rotating molecules decrease with pressure, as
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shown in table S5.

T (K) P (kbar) τC4 (ps) f
220 0 50.9 0.5
300 0 18.8 0.7
300 2 33.8 0.6
300 4 50.2 0.4

Table S2: Mean residence times τC4 and fraction of dynamically activated molecules as determined
from a least-squares fit to the experimental spectra.

S3.2 C4 rotational jump model

The scattering function for the cubic rotational dynamics of adamantane molecules is given by
an elastic contribution (represented by the delta function) plus a sum of inelastic contributions
(represented by Lorentzians)2:

S(Q,ω) = A0(Q, f )δ (ω)+∑
i

Ai(Q, f )
1
π

1/τi(τC4)

(1/τi(τC4))
2 +ω2 (1)

The amplitudes Ai(Q, f ) are given by1,2

A0(Q, f ) = 1− f +
f

24
(1+2A+B+C+2D) (2)

A1(Q, f ) =
f

24
(1+2A+B−C−2D) (3)

A2(Q, f ) =
f

24
(4−4A+4B) (4)

A3(Q, f ) =
f

24
(9−3B+3C−6D) (5)

A4(Q, f ) =
f

24
(9−3B−3C+6D) (6)

Where f is the fraction of rotating molecules, and

A =
4

∑
ν=1

Jν (7)

B =
7

∑
ν=5

Jν (8)

C =
13

∑
ν=8

Jν (9)

D =
16

∑
ν=14

Jν . (10)
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Jν = j0(Qrν , with j0(x) the spherical Bessel function of zeroth order and rν the distances between ini-
tial and final positions of atoms after various cubic rotations, calculated by Lechner and Heidemann 3 .
The Lorentzian widths τi(τC4) are given by

1
τ1

= 0, (11)

1
τ2

=
2

τC4

, (12)

1
τ3

=
1

τC4

, (13)

1
τ4

=
2

3τC4

, (14)

1
τ5

=
4

3τC4

. (15)

The theoretical scattering function has been fitted to the reduced experimental quasielastic spectra
Sexp(Q,ω) using

Sexp(Q,ω) = R(ω)⊗ (C(Q)S(Q,ω))+B(Q,ω), (16)

The factor C(Q) includes the Debye-Waller factor e−〈u
2〉Q2

, where the mean-square displacement
〈u2〉 represents molecular vibrations and librations. C(Q) was allowed to vary freely with Q in the
global fit. The model is convolved with the experimental resolution function R(ω) (collected with
a low-temperature measurement) and a background term B(Q,ω) is added to account for inelastic
contributions to the measured signal, which in this small energy range can be approximated as a
linear function in energy.
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S4 Lattice dynamics calculations

S4.1 Details of the methodology

S4.1.1 Energy minimisation

Before the dynamical matrix was diagonalised, the energy of the system was minimised. The
forcefield parameters are given in table S3.

In the low-temperature phase, the energy of the unit cell was minimised using the default Newton-
Raphson method in GULP with a Broyden-Fletcher-Goldfarb-Shanno (BFGS)4 Hessian updating
scheme.

In the high-temperature phase, an 8×8×8 supercell (of FCC unit cells) was chosen, with a random
distribution of the two possible orientations of the molecules. Finding a global energy minimum in
this system proved difficult. We therefore used a combination of different algorithms to get as close
to a global minimum as possible:

1. energy minimisation using the conjugate gradients implementation in the large-scale atomic/molecular
massively parallel simulator (LAMMPS) code5. An external pressure of 1 bar was set to allow
the simulation box to change size isotropically during the minimisation process. The procedure
was stopped when the energy could not be minimised any further; however, the forces do not
fulfil the stopping criteria, which means that a global minimum has not been found;

2. energy minimisation using the conjugate gradients implementation in GULP. The cell vectors
are allowed to vary individually. Similarly to the LAMMPS result, the procedure was stopped
when the energy could no longer be minimised, although a global minimum was not found.

3. energy minimisation using the Newton-Raphson method in GULP. A limited-memory BFGS
Hessian updating scheme was used, since calculating the full inverse Hessian in this large
system (∼ 53,000 atoms) was not possible. Again, this procedure finished when the energy
could no longer be minimised, without finding a global minimum.

Optimisation of a sample of disordered FCC unit cells using a Newton-Raphson method with standard
BFGS or conjugate gradients was also unsuccessful, as was evidenced by the existence of imaginary
frequencies after the dynamical matrix diagonalisation. Nevertheless, by sequentially optimising
the supercell with the methods described above, these imaginary frequencies were reduced to ∼ 580
modes in the supercell, and after projection only represent 6.1% of all intermolecular modes in the
Brillouin zone. In the calculation of the phonon density of states, the absolute value of these modes
was used as an approximation of their true energy. As seen in the supplementary material, including
the imaginary modes has a minimal effect on the phonon density of states.
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Table S3: Adamantane intermolecular nearest-neighbour Buckingham potential parameters6.

Type A (kJ mol−1) ρ (Å) C (kJ mol−1 Å−6)

C-C 359824.0 0.278 2374.42
C-H 38492.8 0.278 522.67
H-H 11715.2 0.267 113.93

S4.1.2 Lattice dynamics

For the low-temperature phase, the dispersion curve of figure 4b in the main text is calculated using
the quasicubic unit cell. The dynamical matrix was diagonalised using GULP, after which the
neutron-weighted phonon dispersion was obtained using the python package Euphonic7. Neutron
weighting can alter the visibility of modes in the simulated phonon dispersion due to the varying
coherent scattering cross-sections for different elements and due to the polarisation factor Q · e in the
one-phonon neutron scattering function, where Q is the wavevector and e is the mode eigenvector.
In the face-centred cubic (FCC) to tetragonal phase transition, crystal twinning can occur. In figure
4b in the main text this has been accounted for by taking a weighted average of the three possible
twins; the weights were adjusted empirically to get the greatest similarity between calculation and
experiment.

In figure 5 in the main text, both the low- and high-temperature phases were calculated using
a supercell calculation followed by the band-unfolding method8, described in the main text. For
the high-temperature phase, this was necessary to take into account the disorder-induced phonon
broadening; the low-temperature phase was calculated using the same method for consistency. Care
must be taken when using a supercell of conventional rather than primitive unit cells. For the high-
temperature phase, we use a supercell of N conventional FCC unit cells. However, the sum over l in
eq. 1 (main text) is over the primitive unit cells, and there are additional allowed wavevectors in the
supercell9, giving a total of (4L)3 allowed wavevectors.

S4.1.3 Eigenvector analysis using GASP

Eigenvector analysis was performed with GASP10,11, a software package that can, among other things,
separate a molecular displacement into rotational and distortional components. For each eigenvector
of the Γ-point calculation, the molecular structure was displaced along the eigenvector direction, with
the average atomic displacement between 0.001 and 0.01 Å. (The calculation was repeated with a
displacement 10× larger, and yielded the same results. This means that the rotational/translational
analysis is roughly independent of the displacement scale, at least for small displacements < 0.1Å.)
The structure was consequently relaxed in GASP, which here means that distortional displacements
were reversed (since we assume that adamantane is rigid and arbitrarily high force constants were
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chosen, these distortional displacements are not meaningful). GASP’s netdr2 utility analyses, for
each atom in each molecule, the total squared displacement:

M2
tot, mole =

Natoms

∑
i

M2
i (17)

where i sums over the atoms in the molecule and M2
i is the atomic displacement of atom i. Next, the

polycomp utility analyses the squared displacement due to molecular rotation:

M2
rot, mole =

Natoms

∑
i

M2
i,rot (18)

where M2
i,rot is the displacement of atom i due to molecular rotation. We define the rotational character

as Mrot/Mtot.
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S4.2 Unstable phonon modes

Figure S6: Dispersion curve in adamantane’s disordered cubic phase calculated with supercell lattice
dynamics. The imaginary frequencies have been plotted as negative frequencies. Each
mode is coloured by its rotational character Mrot/Mtot. The imaginary frequencies corre-
spond to purely rotational molecular movements.
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Figure S7: Calculated phonon density of states (pDOS) in adamantane’s phases. In each phase,
phonons were calculated at the Γ-point in a supercell (8× 8× 8 for high-temperature
phase, 6×6×6 for low-temperature phase) and projected onto the Brillouin zone; next,
the projected intensities were integrated over the Brillouin zone to produce the pDOS. For
the low-temperature phase, the density of states was also calculated with conventional
methods (sampling the Brillouin zone with a uniform 16×16×16 k-grid) and yielded
similar results both in the shape of the pDOS and the calculated entropy (for SCLD
method: Svib, LT = 695.78 JK−1kg−1; for sampling method: Svib, LT = 691.24 JK−1kg−1).
The SCLD method is plotted here for consistency; this is also what is used to calculate the
entropy change quoted in the main text. The high-temperature phase calculation resulted
in imaginary frequencies. Here the DOS is plotted in two extremes: 1) the minimum
entropy case, where the unstable modes are simply ignored, and 2) the maximum entropy
case, where the imaginary modes are given the lowest possible frequencies by rescaling
the low-temperature Debye law region.
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S4.3 Experiment-theory dispersion comparison

Figure S8: Comparison between cuts of the phonon spectra at chosen points in the Brillouin zone of
the disordered phase. Point L = [0.5,0.5,0.5] (integrated between [2.25,2.25,−3.75]
and [2.75,2.75,−3.25] in experiment) and point X = [0,1.0,0] (integrated between
[2.75,2.75,−2.25] and [3.25,3.25,−1.75] in experiment). At the L-point, the feature
at 4 meV is reproduced. Features at higher energies do not occur in the experiment,
likely because of neutron weighting. Neutron weighting has not been accounted for in
the calculation of the disordered phase since neutron weighting software is currently not
compatible with the SCLD method. However, the neutron weighting in the ordered phase
(figure S9) shows that high-energy modes are downweighted in the neutron structure
factor. This will likely be replicated in the disordered phase, which explains the absence
of high-energy features in the experimental neutron data.
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Figure S9: Calculated dispersion relation of adamantane’s low-temperature phase, with (a) and with-
out (b) neutron weighting. Most of the high-energy (> 5 meV) features are downweighted
in the neutron structure factor.
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S5 Brillouin zone labels

Point Wavevector coordinates
Γ [0,0,0]
X [0,1,0]
L [0.5,0.5,0]
W [0.5,1,0]
U [0.25,1,0.25]
W2 [0,1,0.5]
K [0.75,0,0.75]

Table S4: Labels of high-symmetry points in the Brillouin zone of space group Fm3̄m. Wavevector
coordinates are in conventional basis. In the neutron experiment, the path using these
points was centred at Γ = [3,3,−3].

Point Wavevector coordinates
Γ [0,0,0]
X [0,0.5,0]
M [0.5,0.5,0]
Z [0,0,0.5]
R [0,0.5,0.5]
A [0.5,0.5,0.5]

Table S5: Labels of high-symmetry points in the Brillouin zone of space group P4̄21c.
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