Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Information

Potential Rules for Stable Transition Metal Hexafluoride with High Oxidation State Under Pressures

Shiyin Ma,^{†#} Liang Zhao,^{†#} Shichang Li,[†] Tao Gao*[†] and Feng Peng*[‡]

[†]Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

[‡]College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471934, China

School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

*Email of corresponding author: gaotao@scu.edu.cn(T. G.); and fpeng@calypso.cn (F. P.).

Fig. S1 Convex hulls of the Pd-F system with respect to solid Pd and F at selected pressures. Solid points connected by a solid line denote thermodynamically stable phases, while empty points connected by a dotted line represent unstable/metastable structures.

Fig. S2 Enthalpies of various predicted PdF_2 phases with respect to Pd and PdF₃ as a function of pressures.

Fig. S3 Enthalpies (relative to $R^{3}c$ phase) of various predicted PdF₃ phases as a function of pressures.

Fig. S4 Enthalpies (relative to Fdd2 phase) of various predicted PdF₄ phases as a function of pressures.

Fig. S5 Enthalpies of various predicted PdF_6 phases with respect to PdF_4 and F_2 as a function of pressures using PBE functional.

Fig. S6 Phonon dispersion curves of the predicted Pd-F binary compounds. (a) $P2_1/c$ PdF₂ at 50 GPa. (b) $P2_1/m$ PdF₂ at 200 GPa. (c) $P4_22_12$ PdF₃ at 50 GPa. (d) C2/c PdF₃ at 100 GPa. (e) $P^{\overline{1}}$ PdF₃ at 300 GPa. (f) $P2_1/c$ PdF₄ at 50 GPa. (g) $R^{\overline{3}}m$ PdF₄ at 300 GPa. (h) *Pnma* PdF₆ at 50 GPa. (i) C2/m PdF₆ at

400 GPa.

Fig. S7 Enthalpies of various predicted PdF_6 phases with respect to PdF_4 and F_2 as a function of pressures using optB88-vdW functional.¹⁻²

Fig. S8 Enthalpies of various predicted PdF_6 phases with respect to PdF_4 and F_2 as a function of pressures using optPBE-vdW functional.¹⁻²

Fig. S9 Crystalline structures of the predicted stable Pd-F phases. (a) $P2_1/c$ structure of PdF₂ at 50 GPa. (b) $P2_1/m$ structure of PdF₂ at 200 GPa. (c) $P4_22_12$ structure of PdF₃ at 50 GPa. (d) C2/c structure of PdF₃ at 100 GPa. (e) $P^{\bar{1}}$ structure of PdF₃ at 300 GPa. (f) $P2_1/c$ structure of PdF₄ at 50 GPa. (g) R 3_m structure of PdF₄ at 300 GPa.

Fig. S10 Three-dimensional charge density difference for (a) $P2_1/c$ PdF₂ at 50 GPa; (b) $P2_1/m$ PdF₂ at 200 GPa; (c) $P4_22_12$ PdF₃ at 50 GPa; (d) C2/c PdF₃ at 100 GPa; (e) $P^{\overline{1}}$ PdF₃ at 300 GPa; (f) $P2_1/c$ PdF₄ at 50 GPa; (g) $R^{\overline{3}}m$ PdF₄ at 300 GPa; (h) *Pnma* PdF₆ at 50 GPa and (i) C2/m PdF₆ at 400 GPa with an

isosurface value of 0.03 *e*/Bohr³. Blue and yellow colors represent losing and gaining electrons, respectively.

Fig. S11 Electron function localization (ELF) maps for (a) $P2_1/c$ PdF₂ on the (1.78132, -1.51638, 1) plane at 50 GPa; (b) $P2_1/m$ PdF₂ on the (0, 1, 0) plane at 200 GPa; (c) $P4_22_12$ PdF₃ on the (1, 1.78629, 0) and (2.6609, 1, 2309.73) plane at 50 GPa; (d) C2/c PdF₃ on the (4.90199, 1.75107, -1) and (-1, - 1.9651, 1.9651) plane at 100 GPa; (e) P^{1} PdF₃ on the (1, -1.0398, -2.03364) plane at 300 GPa; (f) $P2_1/c$ PdF₄ on the (-4.46078, -2.16113, 1) and (-1, -2.212, 0) plane at 50 GPa; (g) $R^{3}m$ PdF₄ on the (-1, 0, 5.44173) plane at 300 GPa; (h) *Pnma* PdF₆ on the (1.21664, 0, -1) and (0, 1, 0) plane at 50 GPa; (i) C2/m PdF₆ on the (0, 1, 0) and (4.24799, 0, 1) plane at 400 GPa.

Fig. S12 Projected density of states (PDOS) of the stable Pd-F compounds at selected pressures. Energy is shifted so that the Fermi level E_F equals zero.

Fig. S13 Crystal orbital Hamilton populations (COHP) for the nearest Pd-F and F-F pairs of the stable Pd-F compounds at selected pressures. Positive and negative denote bonding and antibonding orbital interactions, respectively. Energy is shifted so that the Fermi level E_F equals zero.

Fig. S14 Bader charge transfer of Pd atom in the stable Pd-F compounds.

Fig. S15 Relationship between ΔH , ΔU , and ΔPV with pressure of (a) *Pnma* PdF₆ and (b) *C*2/*m* PdF₆ with respect to PdF₄ plus F₂. The changes of enthalpy (ΔH), internal energy (ΔU), and (ΔPV) are defined as $\Delta H = H(PdF_6) - (H(PdF_4) + H(F_2))$, $\Delta U = U(PdF_6) - (U(PdF_4) + U(F_2))$, $\Delta PV = PV(PdF_6) - (PV(PdF_4) + PV(F_2))$, respectively.

Table S1. Calculated structural parameters of the predicted stable TM-F compounds.

	Space	Lattice	Atomic coordinates				
	group	Parameters	(fractional)				
		(Å, °)	Atoms	Х	Y	Ζ	
PdF ₂	$P2_{1}/c$	a=2.57850	Pd (2a)	0.00000	0.50000	0.50000	
(50 GPa)		b=3.81920	F (4e)	0.74248	0.91487	0.32964	
		c=5.58190					
		α=γ=90.0000					
		β=88.5446					
PdF ₂	$P2_1/m$	a=3.37130	Pd (2e)	0.36848	0.75000	0.19062	
(200 GPa)		b=3.43570	F1 (2e)	0.72219	0.75000	0.49336	
		c=3.67800	F3 (2e)	0.92419	0.25000	0.15656	
		α=γ=90.0000					
		β=73.1054					
PdF ₃	P4 ₂ 2 ₁ 2	a=b= 4.44900	Pd (4d)	0.50000	0.00000	1.15186	
(50 GPa)		c=7.21520	F1 (8g)	0.13477	0.22240	1.15347	
		α=β=γ=90.0000	F9 (4f)	0.17945	0.17945	0.50000	
PdF ₃	C2/c	a=6.25010	Pd (4c)	0.25000	0.25000	1.00000	
(100 GPa)		b=4.07430	F1 (8f)	0.36298	0.64277	0.86606	
		c=4.71700	F9 (4e)	0.50000	0.87278	1.25000	
		α=γ=90.0000					
		β=92.4330					
PdF ₃	$P^{\overline{1}}$	a=3.28680	Pd (2i)	0.87218	0.22896	0.79331	
(300 GPa)		b=3.53610	F1 (2i)	0.39081	0.24675	0.57084	
		c=4.52870	F3 (2i)	0.88834	0.28246	0.30974	
		α=100.6174	F7 (2i)	0.64267	0.76473	0.94673	
		β=97.2066					
		γ=113.7740					
PdF ₄	$P2_{1}/c$	a=6.48130	Pd (2d)	0.50000	0.00000	0.50000	
(50 GPa)		b=4.49200	F1 (4e)	0.30491	0.86568	0.92003	

		c=4.54160	F5 (4e)	0.85507	0.66052	1.18750
		α=γ=90.0000				
		β=141.0896				
PdF ₄	$R^{3}m$	a=b=3.19650	Pd (3a)	0.00000	0.00000	0.00000
(300 GPa)		c=9.29580	F1 (6c)	0.33333	0.66667	0.85564
		α=β=90.0000	F7 (6c)	0.00000	0.00000	0.60541
		γ=120.0000				
PdF ₆	Pnma	a=7.75110	Pd (4c)	0.62909	0.75000	0.42417
(50 GPa)		b=7.15950	F1 (8d)	0.76873	0.92899	0.59784
		c=4.12080	F9 (8d)	1.48619	0.57166	0.25409
		α=β=γ=90.0000	F17 (4c)	1.23838	0.25000	0.94347
			F21 (4c)	1.49869	0.25000	0.20390
PdF ₆	<i>C</i> 2/ <i>m</i>	a=6.41910	Pd (2d)	0.00000	0.50000	0.50000
(400 GPa)		b=3.04890	F1 (4i)	0.93427	0.00000	0.77922
		c=3.50030	F5 (4i)	0.76690	0.00000	0.34187
		α=γ=90.0000	F9 (4i)	0.64181	0.00000	0.90677
		β=83.9461				
CoF ₆	Pnma	a=6.80090	Co (4c)	0.63064	0.75000	0.42682
(200 GPa)		b=6.32760	F1 (4c)	0.23434	0.25000	0.94422
		c=3.63240	F5 (8d)	0.77071	0.93167	0.60482
		α=β=γ=90.0000	F9 (8d)	0.48415	0.56973	0.25708
			F21 (4c)	0.49709	0.25000	0.19343
CrF ₆	Pnma	a=6.91630	Cr (4c)	0.12798	0.75000	0.42095
(200 GPa)		b=6.37400	F1 (4c)	-0.26523	0.25000	0.94312
		c=3.66670	F5 (8d)	0.26664	0.93059	0.59996
		α=β=γ=90.0000	F9 (8d)	-0.01474	0.56905	0.25111
			F21 (4c)	0.00148	0.25000	0.20390
HfF ₆	Pnma	a=7.67010	Hf (4c)	0.15008	0.75000	0.46004
(200 GPa)		b=6.60180	F1 (4c)	-0.30420	0.25000	0.98733

		c=3.32130	F5 (8d)	0.31835	0.96650	0.60367
		α=β=γ=90.0000	F9 (8d)	-0.05811	0.51436	0.31216
			F21 (4c)	-0.01585	0.25000	0.03093
MnF ₆	Pnma	a=6.88760	Mn (4c)	0.62864	0.75000	0.42251
(200 GPa)		b=6.35520	F1 (4c)	0.23331	0.25000	0.94165
		c=3.64300	F5 (8d)	0.76849	0.93060	0.60129
		α=β=γ=90.0000	F9 (8d)	0.48489	0.56860	0.25417
			F21 (4c)	0.49953	0.25000	0.19881
YF ₆	Pnma	a=6.40450	Y (4c)	1.16541	0.75000	0.49833
(200 GPa)		b=7.06350	F1 (4c)	0.66572	0.25000	0.00008
		c=3.77180	F5 (8d)	1.31185	-0.00163	0.71373
		α=β=γ=90.0000	F9 (8d)	0.94064	0.50236	0.25932
			F21 (4c)	0.99855	0.25000	0.00350

Table S2. Calculated Bader charge analysis of the stable Pd-F compounds. ΔQ is the charge transfer in e per atom. The number in parentheses is the Wyckoff sites corresponding to the atoms.

Phase	Pressure (GPa)	Q (Pd/e)	ΔQ (Pd/e)	Q (F/e)	$\Delta Q (F/e)$
$P2_1/c \text{ PdF}_2$	50	8.94 (2a)	-1.06	7.53 (4e)	+0.53 (F1)
$P2_1/m \text{ PdF}_2$	200	8.90 (2e)	-1.10	7.53 (2e)	+0.53 (F1)
				7.57 (2e)	+0.57 (F3)
$P4_{2}2_{1}2 \text{ PdF}_{3}$	50	8.51 (4d)	-1.49	7.49 (8g)	+0.49 (F1)
				7.51 (4f)	+0.51 (F9)
C2/c PdF ₃	100	8.53 (4c)	-1.47	7.46 (8f)	+0.46 (F1)
				7.55 (4e)	+0.55 (F9)
$P^{\overline{1}} PdF_3$	300	8.55 (2i)	-1.45	7.45 (2i)	+0.45 (F1)
				7.51 (2i)	+0.51 (F3)
				7.49 (2i)	+0.49 (F7)

$P2_1/c \text{ PdF}_4$	50	8.34 (2d)	-1.66	7.38 (4e)	+0.38 (F1)
				7.45 (4e)	+0.45 (F5)
$R^{3}m$ PdF ₄	300	8.26 (3a)	-1.74	7.46 (6c)	+0.46 (F1)
				7.41 (6c)	+0.41 (F7)
Pnma PdF ₆	50	8.09 (4c)	-1.91	7.32 (8d)	+0.32 (F1)
				7.31 (8d)	+0.31 (F9)
				7.33 (4c)	+0.33 (F17)
				7.32 (4c)	+0.32 (F21)
$C2/m \operatorname{PdF}_6$	400	8.06 (2d)	-1.94	7.33 (4i)	+0.33 (F1)
				7.34 (4i)	+0.34 (F5)
				7.30 (4i)	+0.30 (F9)

References

- 1. J. Klimeš, D. R. Bowler and A. Michaelides, J. Phys-Condens. Mat., 2009, 22, 022201.
- 2. T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard and D. C. Langreth, *Phys. Rev. B*, 2007,

76, 125112.