Supplementary material

Tunable Schottky contacts in graphene/ XAu_4Y (X, Y = Se,

Te) heterostructures

Yufei Xue^{†,#}, Lei Gao^{†,‡,#,*}, Weina Ren[†], Xuxia Shai[†], Tingting Wei[†], Chunhua Zeng^{†,*}, Hua Wang^{‡,*}

[†] Institute of Physical and Engineering Science/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China

[‡] State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China

[#] These authors contributed equally.

* Corresponding author.

E-mail: lgao@kust.edu.cn (Lei Gao); chzeng83@kust.edu.cn (Chunhua Zeng); wanghua65@163.com (Hua Wang)

Figure S1 Energy band structures of (a) graphene, (b) $SeAu_4Se$, (c) $TeAu_4Te$ and (d) $SeAu_4Te$ monolayers, respectively.

Figure S2 Electrostatic potentials of (a) SeAu₄Se and (b) TeAu₄Te monolayers, respectively.

Figure S3 (a)-(g) Projected band structures of $G/SeAu_4Se$ heterostructure with different interlayer distances. The contributions of G and $SeAu_4Se$ monolayers are marked by red and green, respectively.

Figure S4 (a)-(g) Projected band structures of $G/SeAu_4Te$ heterostructure with different interlayer distances. The contributions of G and $SeAu_4Te$ monolayers are marked by red and green, respectively.

Figure S5 (a)-(g) Projected band structures of $G/TeAu_4Se$ heterostructure with different interlayer distances. The contributions of G and $TeAu_4Se$ monolayers are marked by red and green, respectively.

Figure S6 (a)-(g) Projected band structures of $G/TeAu_4Te$ heterostructures with different interlayer distances. The contributions of G and $TeAu_4Te$ monolayers are marked by red and green, respectively.

Figure S7 Charge density differences of (a) G/SeAu₄Se, (b) G/SeAu₄Te and (c) G/TeAu₄Se heterostructures with interlayer distances of 2.9 and 4.1 Å. The charge density difference of heterostructures is denoted by blue solid line. The charge densities of G/XAu₄Y, G and XAu₄Y are denoted by red solid lines, cyan and green dotted lines, respectively.

Figure S8 Electrostatic potentials of (a) G/SeAu₄Se, (b) G/SeAu₄Te and (c) G/TeAu₄Se heterostructures with interlayer distances from 2.9 to 4.1 Å. With the interlayer distance decreasing, the amount of transferred electrons increases, and meanwhile, the potential well of G notably becomes deeper, leading to a stronger interfacial electrostatic field.

Figure S9 (a)-(n) Projected band structures of G/SeAu₄Se heterostructures with -0.35 to +0.35 V/Å electric fields. The contributions of G and SeAu₄Se monolayers are marked by red and green, respectively.

Figure S10 (a)-(n) Projected band structures of G/SeAu₄Te heterostructures with -0.35 to +0.35 V/Å electric fields. The contributions of G and SeAu₄Te monolayers are marked by red and green, respectively.

Figure S11 (a)-(n) Projected band structures of G/TeAu₄Se heterostructures with -0.35 to +0.35 V/Å electric fields. The contributions of G and TeAu₄Se monolayers are marked by red and green, respectively.

Figure S12 (a)-(n) Projected band structures of G/TeAu₄Te heterostructures with -0.35 to +0.35 V/Å electric fields. The contributions of G and TeAu₄Te monolayers are marked by red and green, respectively.

Figure S13 Energy shift of graphene's Dirac cone with respect to the Fermi level for (a) G/SeAu₄Se, (b) G/SeAu₄Te and (c) G/TeAu₄Se as a function of electric field from -0.35 to +0.35 V/Å.

Figure S14 Doping charge carrier concentrations of graphene in (a) G/SeAu₄Se, (b) G/SeAu₄Te and (c) G/TeAu₄Se as a function of electric field from -0.35 to +0.35 V/Å. The hole (electron) doping charge carrier concentrations of graphene correspond to $\Delta E_D > 0$ ($\Delta E_D < 0$) in figure S13.

Monolovor	a (Å)	b (Å)	Dinala mamanta (Dahya)
Monorayer	u (A)	<i>U</i> (A)	Dipole moments (Debye)
SeAu ₄ Se	7.54	5.25	0.00
TeAu ₄ Te	7.92	5.36	0.00
SeAu ₄ Te	7.72	5.31	0.22

Table S1 The structural parameters and dipole moments of $SeAu_4Se$, $TeAu_4Te$, $SeAu_4Te$ monolayers, respectively.