Supplementary material

Tunable Schottky contacts in graphene/ $\mathrm{XAu}_{4} \mathrm{Y}(\mathrm{X}, \mathrm{Y}=\mathrm{Se}$,

Te) heterostructures

 Wang ${ }^{\ddagger, *}$
${ }^{\dagger}$ Institute of Physical and Engineering Science/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China

* State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
\# These authors contributed equally.
* Corresponding author.

E-mail: lgao@kust.edu.cn (Lei Gao); chzeng83@kust.edu.cn (Chunhua Zeng); wanghua65@163.com (Hua Wang)

Figure S1 Energy band structures of (a) graphene, (b) $\mathrm{SeAu}_{4} \mathrm{Se}$, (c) TeAu 4 Te and (d) $\mathrm{SeAu}_{4} \mathrm{Te}$ monolayers, respectively.

Figure S2 Electrostatic potentials of (a) $\mathrm{SeAu}_{4} \mathrm{Se}$ and (b) $\mathrm{TeAu}_{4} \mathrm{Te}$ monolayers, respectively.

Figure S3 (a)-(g) Projected band structures of $\mathrm{G} / \mathrm{SeAu}_{4} \mathrm{Se}$ heterostructure with different interlayer distances. The contributions of G and $\mathrm{SeAu}_{4} \mathrm{Se}$ monolayers are marked by red and green, respectively.

Figure S4 (a)-(g) Projected band structures of $\mathrm{G} / \mathrm{SeAu}_{4} \mathrm{Te}$ heterostructure with different interlayer distances. The contributions of G and $\mathrm{SeAu}_{4} \mathrm{Te}$ monolayers are marked by red and green, respectively.

Figure S5 (a)-(g) Projected band structures of $\mathrm{G} / \mathrm{TeAu}_{4} \mathrm{Se}$ heterostructure with different interlayer distances. The contributions of G and $\mathrm{TeAu}_{4} \mathrm{Se}$ monolayers are marked by red and green, respectively.

Figure S6 (a)-(g) Projected band structures of G/TeAu ${ }_{4}$ Te heterostructures with different interlayer distances. The contributions of G and $\mathrm{TeAu}_{4} \mathrm{Te}$ monolayers are marked by red and green, respectively.

Figure S7 Charge density differences of (a) $\mathrm{G} / \mathrm{SeAu}_{4} \mathrm{Se}$, (b) $\mathrm{G} / \mathrm{SeAu}_{4} \mathrm{Te}$ and (c) $\mathrm{G} / \mathrm{TeAu}_{4} \mathrm{Se}$ heterostructures with interlayer distances of 2.9 and $4.1 \AA$. The charge density difference of heterostructures is denoted by blue solid line. The charge densities of $\mathrm{G} / \mathrm{XAu}_{4} \mathrm{Y}, \mathrm{G}$ and $\mathrm{XAu} u_{4} \mathrm{Y}$ are denoted by red solid lines, cyan and green dotted lines, respectively.

Figure S8 Electrostatic potentials of (a) G/SeAu $\mathrm{H}_{4} \mathrm{Se}$, (b) G/SeAu $\mathrm{S}_{4} \mathrm{Te}$ and (c) $\mathrm{G} / \mathrm{TeAu} u_{4} \mathrm{Se}$ heterostructures with interlayer distances from 2.9 to $4.1 \AA$. With the interlayer distance decreasing, the amount of transferred electrons increases, and meanwhile, the potential well of G notably becomes deeper, leading to a stronger interfacial electrostatic field.

Figure S9 (a)-(n) Projected band structures of G/SeAu \mathbf{H}_{4} Se heterostructures with -0.35 to $+0.35 \mathrm{~V} / \AA$ electric fields. The contributions of G and $\mathrm{SeAu}_{4} \mathrm{Se}$ monolayers are marked by red and green, respectively.

Figure S10 (a)-(n) Projected band structures of $\mathrm{G} / \mathrm{SeAu}_{4} \mathrm{Te}$ heterostructures with -0.35 to +0.35 V / \AA electric fields. The contributions of G and $\mathrm{SeAu}_{4} \mathrm{Te}$ monolayers are marked by red and green, respectively.

Figure S11 (a)-(n) Projected band structures of $\mathrm{G} / \mathrm{TeAu}_{4} \mathrm{Se}$ heterostructures with -0.35 to +0.35 V / \AA electric fields. The contributions of G and $\mathrm{TeAu}_{4} \mathrm{Se}$ monolayers are marked by red and green, respectively.

Figure S12 (a)-(n) Projected band structures of $\mathrm{G} / \mathrm{TeAu}_{4} \mathrm{Te}$ heterostructures with -0.35 to +0.35 $\mathrm{V} / \AA \AA$ electric fields. The contributions of G and $\mathrm{TeAu}_{4} \mathrm{Te}$ monolayers are marked by red and green, respectively.

Figure S13 Energy shift of graphene's Dirac cone with respect to the Fermi level for (a) G/SeAu ${ }_{4} \mathrm{Se}$, (b) $\mathrm{G} / \mathrm{SeAu}_{4} \mathrm{Te}$ and (c) $\mathrm{G} / \mathrm{TeAu}_{4} \mathrm{Se}$ as a function of electric field from -0.35 to $+0.35 \mathrm{~V} / \AA$.

Figure S14 Doping charge carrier concentrations of graphene in (a) G/SeAu ${ }_{4} \mathrm{Se}$, (b) G/SeAu $\mathrm{Se}_{4} \mathrm{Te}$ and (c) $\mathrm{G} / \mathrm{TeAu}_{4} \mathrm{Se}$ as a function of electric field from -0.35 to $+0.35 \mathrm{~V} / \AA$. The hole (electron) doping charge carrier concentrations of graphene correspond to $\Delta E_{D}>0\left(\Delta E_{D}<0\right)$ in figure S13.

Table S1 The structural parameters and dipole moments of $\mathrm{SeAu}_{4} \mathrm{Se}, \mathrm{TeAu} u_{4} \mathrm{Te}$, $\mathrm{SeAu}_{4} \mathrm{Te}$ monolayers, respectively.

Monolayer	$a(\AA)$	$b(\AA)$	Dipole moments (Debye)
$\mathrm{SeAu}_{4} \mathrm{Se}$	7.54	5.25	0.00
$\mathrm{TeAu}_{4} \mathrm{Te}$	7.92	5.36	0.00
$\mathrm{SeAu}_{4} \mathrm{Te}$	7.72	5.31	0.22

