Supplementary Information to Ordering of monomers, dimers and polymers of deposited Br₂I₂Py molecules: a modeling study

Andrius Ibenskas, *,† Mantas Šimėnas, ‡ and Evaldas E. Tornau †

†Center for Physical Sciences and Technology, Saulėtekio 3, LT-10257 Vilnius, Lithuania
‡Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania

E-mail: andrius.ibenskas@ftmc.lt

Fig. S1: DFT-optimized molecular pairs corresponding to configurations i = 1, 2, 3 of the monomeric phase built of Br₂I₂Py and Br₄Py molecules. Interaction energies e_{xi} , e_{yi} obtained by DFT are shown for each case, along with equations for rough estimation of differences between X-X and X-H components of e_{xi} and e_{yi} .

Fig. S2: DFT-optimized two-molecule clusters corresponding to (a) e_{x1} and (b) derivative of e_{x1} with both I atoms substituted by H atoms. The difference of -3.28 kcal/mol between energies of (a) and (b) configurations can be attributed mainly to the Br - I bonding, amounting approximately to 60% of e_{x1} .

Fig. S3: Snapshots of MC simulation, illustrating phase separation and mixing in monomeric-dimeric system consisting of intact and singly deiodinated molecules when organometallic interaction is weak $(e_{Au}/e_y = 0.3)$. Here (a) $c_2/c_1 = 1$ and (b) $c_2/c_1 = 2$. The letters M and D mark monomeric and dimeric regions, respectively.