Supplementary Materials

A family of robust Dirac cone materials: Two-dimensional

hexagonal M₃X₂ (M = Zn/Cd/Hg, X=Si/Ge)

Qiuyang Li^a, Cuixia Yan^a*(Equal contribution), Chenchen Qi^a, Shi Qiu^a, Ting Yang^a,

Jinming Cai^a

a. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China

Fig.S1.Phonon spectrum of 3×3 superlattice Hg₃Ge₂

Fig.S2 Snapshots for the equilibrium structures of the M_3X_2 monolayers at 900K temperatures.

Fig.S3 Partial density of state (PDOS) of M₃X₂.

Fig.S4 The calculated band structure (3D band structure) of the M₃X₂ lattice without SOC. Yellow and black solid lines represent the HSE and PBE functional, respectively.

Fig.S5 Band structures of M_3X_2 with SOC around K point.

Fig.S6 Variations of electronic band structure against different in-plane biaxial strains $(-4\% \sim +4\%)$.

Fig. S7 Orbital-resolved band structures of Cd_3Si_2 monolayer under mild tensile or compressional strains (-4% ~ 4%), under which the Dirac cone persist evidently. The green, yellow, blue and purple dots represent the contributions from the p_z, p_x, p_y and

s atomic orbitals, respectively.

Fig.S8 electronic band structure of 1D zigzag nanoribbons of Cd_3Si_2 cut from the width(N=6~18).

Fig.S9 (a) Structural model of armchair nanoribbon of Cd₃Si₂. (b) Band structures of the 1D armchair nanoribbons from the Cd₃Si₂.

Width(N)/Band gap(eV)	6	14	18
zigzag	sm ^a	sm ^a	sm ^a
armchair	0.0616	0.0313	0.0056

Table.S1 The band gaps of Cd_3Si_2 nanoribbons with various widths.

Fig.S10 (Color online) The first Brillouin zones of the primitive (green line), 2×2 supercell (red dash line), 3×3 supercell (black line) of Cd_3Si_2 and their corresponding band structure.

Fig.S11 (a)The ELF of Cd_3Si_2 /h-BN heterostructure (b) the band structures of Cd_3Si_2 on h-BN substrate.

Fig.S12 Calculated band structure of the Cd_3Si_2/SiC heterostructure.