Supporting Information

The MC-QTAIM analysis reveals an exotic bond in the coherently quantum superposed Malonaldehyde

Mohammad Goli¹ and Shant Shahbazian²

¹School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-

5531, Iran,

Email: m_goli@ipm.ir

²Department of Physics, Shahid Beheshti University, Evin, Tehran, Iran

E-mail: sh_shahbazian@sbu.ac.ir

Table of contents

Page 3: The optimized geometry of 1 (or 3) and 2 at the CCSD(T)/cc-pVQZ level

Page 4: The averaged geometries of 4 and 5

Pages 5-6: The regression procedure: Transforming numerical one-proton wavefunctions into Gaussian-type orbitals

Page 7: Table S1- Summary of the ab initio NEO-DFT results

The optimized geometry of 1 (or 3) at the CCSD(T)/cc-pVQZ level						
Atom	Number	Coordinates [Bohr]				
Atom		Х	Y	Z		
С	1	0.000000	2.077361	0.000000		
С	2	2.339522	0.675322	0.000000		
С	3	-2.236791	0.811101	0.000000		
0	4	2.439903	-1.657362	0.000000		
0	5	-2.441842	-1.681011	0.000000		
Н	6	0.019948	4.116154	0.000000		
Н	7	4.109976	1.763188	0.000000		
Н	8	-4.041823	1.778489	0.0000000		
H^*	9	-0.688985	-2.333555	0.0000000		

* The coordinates of the quantum hydrogen atom

The optimized geometry of 2 at the CCSD(T)/cc-pVQZ level						
Atom	Number	Coordinates [Bohr]				
Atom		Х	Y	Z		
С	1	0.000000	0.000000	2.130982		
С	2	0.000000	-2.239563	0.731188		
С	3	0.000000	2.239563	0.731188		
0	4	0.000000	-2.229682	-1.682393		
0	5	0.000000	2.229682	-1.682393		
Н	6	0.000000	0.000000	4.166644		
Н	7	0.000000	-4.079697	1.658786		
Н	8	0.000000	4.079697	1.658786		
H^{*}	9	0.000000	0.0000000	-2.126078		

* The coordinates of the quantum hydrogen atom

The averaged geometry of 4						
Atom	Number	Coordinates [Bohr]				
Atom		Х	Y	Z		
С	1	0.000000	0.000000	4.458367		
С	2	2.288822	0.000000	3.124956		
С	3	-2.288822	0.000000	3.124956		
0	4	2.439951	0.000000	0.711995		
0	5	-2.439951	0.000000	0.711995		
Н	6	0.000000	0.000000	6.497257		
Н	7	4.077565	0.000000	4.152645		
Н	8	-4.077565	0.000000	4.152645		
Bq^*	9	-0.564373	0.000000	0.132820		
Bq^*	10	0.564373	0.0000000	0.132820		

* The coordinates of the "ghost atoms" used as the centers of expansion for the electronic basis functions of the quantum hydrogen atom coinciding with the maxima of the ground state protonic orbital.

The averaged geometry of 5							
Atom	Number		Coordinates [Bohr]				
	Inumber	Х	Y	Z			
С	1	0.000000	0.000000	4.458367			
C	2	2.288822	0.000000	3.124956			
С	3	-2.288822	0.000000	3.124956			
0	4	-2.439951	0.000000	0.711995			
0	5	2.439951	0.000000	0.711995			
Н	6	0.000000	0.000000	6.497257			
Н	7	4.077565	0.000000	4.152645			
Н	8	-4.077565	0.000000	4.152645			
Bq^*	9	-0.582494	0.000000	0.121241			
Bq*	10	0.582494	0.000000	0.121241			

 Bq
 10
 0.582494
 0.000000
 0.121241

 * The coordinates of the "ghost atoms" used as the centers of expansion for the electronic basis functions of the quantum hydrogen atom coinciding with the maxima of the excited state protonic orbital.

The regression procedure: Transforming the numerical protonic wavefunctions into the Gaussian-type orbitals

The numerical ground and excited protonic orbitals, obtained by the 3D Numerov method, were fitted by linear combinations of [6s6p6d] Cartesian Gaussian-type shells which were placed on the molecular symmetry plane of the averaged geometry that contains all the clamped nuclei. This is called the xz plane where the x-axis is the C₂ geometrical symmetry axis with respect to the rotation of the clamped nuclei. In the fitting procedure, the protonic orbital is explicitly shown by:

$$\Psi_{ground\ state} = \sum_{i=1}^{15} [c_i \varphi_{\alpha_i}(x_i, y_i, z_i) + c_i \varphi_{\alpha_i}(-x_i, y_i, z_i)],$$

and,

$$\Psi_{excited \ state} = \sum_{i=1}^{15} [c_i \varphi_{\alpha_i}(x_i, y_i, z_i) - c_i \varphi_{\alpha_i}(-x_i, y_i, z_i)],$$

where c_i , α_i and (x_i, y_i, z_i) are the coefficients, exponents and coordinates of the center of *i-th normalized* Gaussian function in these series, respectively. It must be noted that only non-zero contributions, due to the molecular symmetry, were included in the wavefunction expansions and offered in the forthcoming tables of the optimal parameters. The following tables gather the optimized parameters of the protonic orbitals, which were derived after the fitting of the Gaussian expansions to the 3D grid of the protonic wavefunctions.

Regression parameters of the ground state protonic orbital							
Function	Shell	Function	Evnopont	Coefficient	Coordinates [Bohr]		
Number	Number	Туре	Exponent Coefficient	Х	Y	Z	
1	1	S	5.92536	-0.667308	0.098133	0.000000	-0.042515
2	2	S	4.90609	0.103662	0.831002	0.000000	-0.082282
3	3	S	5.53872	0.971034	0.256124	0.000000	-0.022740
4	4	Pz	9.99765	-0.025588	0.894294	0.000000	-0.102668
5	5	Pz	5.98643	0.277155	0.488342	0.000000	-0.086228
6	6	Pz	8.71275	-0.067002	0.668808	0.000000	0.221253
7	7	Dxx	6.17956	0.583140	0.559992	0.000000	0.043214
8	7	Dyy	6.17956	-0.405039	0.559992	0.000000	0.043214
9	7	Dzz	6.17956	0.505316	0.559992	0.000000	0.043214
10	8	Dxx	6.97638	0.417660	0.736994	0.000000	0.148422
11	8	Dyy	6.97638	-0.295682	0.736994	0.000000	0.148422
12	8	Dzz	6.97638	0.230332	0.736994	0.000000	0.148422
13	9	Dxx	6.33365	-0.999577	0.649366	0.000000	0.093094
14	9	Dyy	6.33365	0.756131	0.649366	0.000000	0.093094
15	9	Dzz	6.33365	-0.587118	0.649366	0.000000	0.093094

Regression parameters of the excited state protonic orbital							
Function	Shell	Function	Europont	Coefficient	Coordinates [Bohr]		
Number	Number	Туре	Exponent	Coefficient	Х	Y	Z
1	1	S	7.94753	-0.995443	0.063433	0.000000	-0.199071
2	2	S	8.43716	0.469871	0.967696	0.000000	0.165908
3	3	S	6.71810	0.999654	0.280224	0.000000	-0.116529
4	4	Pz	6.37756	-0.778184	0.720576	0.000000	0.060806
5	5	Pz	7.81809	0.835965	0.545553	0.000000	0.019451
6	6	Pz	7.93854	0.155353	0.834297	0.000000	0.249593
7	7	Dxx	7.17292	0.272671	0.498309	0.000000	0.080944
8	7	Dyy	7.17292	0.310717	0.498309	0.000000	0.080944
9	7	Dzz	7.17292	0.434034	0.498309	0.000000	0.080944
10	8	Dxx	6.66305	-0.207159	0.560419	0.000000	0.028372
11	8	Dyy	6.66305	-0.999654	0.560419	0.000000	0.028372
12	8	Dzz	6.66305	-0.402189	0.560419	0.000000	0.028372
13	9	Dxx	6.30875	-0.468891	0.618625	0.000000	0.067678
14	9	Dyy	6.30875	0.861386	0.618625	0.000000	0.067678
15	9	Dzz	6.30875	0.019168	0.618625	0.000000	0.067678

Method/basis set	B3LYP-EPC17-1/[cc-pVTZ:10s10p10d]		
System	2	1 and 3	
Electronic kinetic energy	265.577772	265.554369	
Proton's kinetic energy	0.007718	0.007746	
Electron-electron potential energy	261.422933	258.206955	
Proton-electron potential energy	-13.233539	-12.654149	
electron-clamped nuclei potential energy	-949.386639	-943.531760	
Proton-clamped nuclei potential energy	12.255060	11.684860	
Clamped Nuclei-clamped Nuclei potential energy	156.082444	153.453666	
Total energy	-267.274253	-267.278314	
Virial ratio	2.006359	2.006463	
Method/basis set	B3LYP/[cc-pVTZ:6s6p6d]		
System	4	5	
Electronic kinetic energy	265.443959	265.454513	
Proton's kinetic energy	0.005092	0.005817	
Electron-electron potential energy	258.213390	258.215910	
Proton-electron potential energy	-12.401579	-12.396164	
electron-clamped nuclei potential energy	-943.513438	-943.531044	
Proton-clamped nuclei potential energy	11.709815	11.712679	
Clamped Nuclei-clamped Nuclei potential energy	153.388670	153.388670	
Total energy	-267.154092	-267.149620	
Virial ratio	2.006423	2.006364	

 Table S1- Summary of the ab initio NEO-DFT results.