## Supplementary Information

## Decomposition mechanism of 1,3,5-trinitro-2,4,6-trinitroaminobenzene under thermal and shock stimulus using ReaxFF molecular dynamics simulations

Jun Jiang <sup>a</sup>, Hao-Ran Wang <sup>a</sup>, Si-Yu Xu <sup>b</sup>, Feng-Qi Zhao <sup>b</sup>, Xue-Hai Ju <sup>a\*</sup>

<sup>a</sup> Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, *P. R.* China

<sup>b</sup> Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, *P. R.* China

To verify the adequacy of the applied potential, the dissociation energies (C-NO<sub>2</sub>, N-NO<sub>2</sub>) and average bond lengths were listed in Table S1 and S2. All data were calculated by ReaxFF force fields are excellently consistent with those by the DFT-B3LYP/6-311++G\*\* method. The average bond length error does not exceed 10%. The BDE of three bond types are ranked as N-NO<sub>2</sub> > C-NO<sub>2</sub> >N-H under both ReaxFF and DFT simulation.

| <b>Fable S1.</b> The average bond lengt | ths $(L, Å)$ and re | elative error (Er, % | b) in TNTNB crysta |
|-----------------------------------------|---------------------|----------------------|--------------------|
|-----------------------------------------|---------------------|----------------------|--------------------|

|                        | N-C  | N-H  | N-O  | N-N  | C-C  |
|------------------------|------|------|------|------|------|
| $L_{\text{ReaxFF-lg}}$ | 1.49 | 1.11 | 1.28 | 1.55 | 1.44 |
| $L_{\rm DFT}$          | 1.44 | 1.01 | 1.22 | 1.43 | 1.41 |
| <i>Er</i> (%)          | 3.33 | 9.81 | 5.75 | 8.29 | 2.48 |

| Table. S | S2. | The | lattice | parameters | of | TNTNB |
|----------|-----|-----|---------|------------|----|-------|
|----------|-----|-----|---------|------------|----|-------|

|                  | a (Å)  | b (Å) | c (Å)  | $\rho$ (g/cm <sup>3</sup> ) |
|------------------|--------|-------|--------|-----------------------------|
| Exp <sup>2</sup> | 10.825 | 7.075 | 17.673 | 1.995                       |
| ReaxFF           | 10.746 | 7.023 | 16.965 | 2.040                       |
| Er (%)           | 0.730  | 0.735 | 4.006  | -2.256                      |

| Table S3. The tota | l energies and | bond dissociation | energy (B | BDE in kcal/mol | ) ' |
|--------------------|----------------|-------------------|-----------|-----------------|-----|
|--------------------|----------------|-------------------|-----------|-----------------|-----|

| Methods   | Reaction <sup>b</sup> | $E_{\mathrm{AB}}$ | $E_{\mathrm{A}}$ | $E_{\mathrm{B}}$ | BDE   |
|-----------|-----------------------|-------------------|------------------|------------------|-------|
| ReaxFF-lg | R1                    | -3230.20          | -2964.76         | -239.10          | 26.34 |
|           | R2                    | -3230.20          | -2925.91         | -239.04          | 65.25 |

\* Corresponding author. *E-mail address:* <u>xhju@njust.edu.cn</u> (Xue-Hai Ju)



Table S4. List of Bond Order Minimum Values Used to Determine Molecules

| atom type | atom type | bond order |
|-----------|-----------|------------|
| С         | С         | 0.55       |
| С         | Н         | 0.40       |
| С         | Ν         | 0.30       |
| С         | Ο         | 0.65       |
| Н         | Н         | 0.55       |
| Н         | Ν         | 0.55       |
| Н         | О         | 0.40       |
| Ν         | Ν         | 0.55       |
| Ν         | О         | 0.40       |
| Ο         | Ο         | 0.65       |

Table S5. Decomposition pathways (the five most frequency) of TNTNB in 10 ps under different shock velocities and temperatures

|          | Reactions                                                             | Frequency |
|----------|-----------------------------------------------------------------------|-----------|
| 7.0 km/s | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{24}N_{18}$ | 42        |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                  | 19        |

|          | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{22}N_{17} + NO_2$      | 13  |
|----------|-----------------------------------------------------------------------------------|-----|
|          | $C_{12}H_6O_{24}N_{18} + C_6H_3O_{12}N_9 \rightarrow C_{18}H_9O_{36}N_{27}$       | 12  |
|          | $C_{12}H_6O_{22}N_{17} + NO_2 \rightarrow C_{12}H_6O_{24}N_{18}$                  | 11  |
| 7.5 km/s | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{24}N_{18}$             | 50  |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                              | 24  |
|          | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_6H_2O_{12}N_9 + C_6H_4O_{12}N_9$ | 15  |
|          | $C_{12}H_6O_{24}N_{18} + C_6H_3O_{12}N_9 \rightarrow C_{18}H_9O_{36}N_{27}$       | 12  |
|          | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{22}N_{17} + NO_2$      | 9   |
| 8.0 km/s | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{24}N_{18}$             | 60  |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                              | 49  |
|          | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{22}N_{17} + NO_2$      | 18  |
|          | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_6H_2O_{12}N_9 + C_6H_4O_{12}N_9$ | 11  |
|          | $C_6H_3O_{12}N_9 + NO_2 \rightarrow C_6H_3O_{14}N_{10}$                           | 11  |
| 8.5 km/s | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{24}N_{18}$             | 57  |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                              | 41  |
|          | $C_6H_3O_{12}N_9 + C_6H_3O_{12}N_9 \rightarrow C_{12}H_6O_{22}N_{17} + NO_2$      | 14  |
|          | $C_{12}H_6O_{24}N_{18} + C_6H_3O_{12}N_9 \rightarrow C_{18}H_9O_{36}N_{27}$       | 14  |
|          | $C_6H_3O_{12}N_9 + NO_2 \rightarrow C_6H_3O_{14}N_{10}$                           | 11  |
| 2500 K   | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                              | 338 |
|          | $C_6H_3O_8N_7 \rightarrow C_6H_3O_6N_6 + NO_2$                                    | 323 |
|          | $C_6H_3O_{10}N_8 \rightarrow C_6H_3O_8N_7 + NO_2$                                 | 248 |
|          | $C_6H_3O_6N_6 \rightarrow C_6H_3O_4N_5 + NO_2$                                    | 146 |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_8N_7 + NO_2 + NO_2$                          | 116 |
| 3000 K   | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                              | 288 |
|          | $C_6H_3O_8N_7 \rightarrow C_6H_3O_6N_6 + NO_2$                                    | 271 |
|          | $C_6H_3O_{10}N_8 \rightarrow C_6H_3O_8N_7 + NO_2$                                 | 183 |
|          | $C_6H_3O_6N_6 \rightarrow C_6H_3O_4N_5 + NO_2$                                    | 157 |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_8N_7 + NO_2 + NO_2$                          | 141 |
| 3500 K   | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                              | 225 |
|          | $C_6H_3O_8N_7 \rightarrow C_6H_3O_6N_6 + NO_2$                                    | 182 |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_8N_7 + NO_2 + NO_2$                          | 151 |
|          | $HNO_2 \rightarrow HO + NO$                                                       | 120 |
|          | $C_6H_3O_{10}N_8 \rightarrow C_6H_3O_8N_7 + NO_2$                                 | 111 |
| 4000 K   | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_{10}N_8 + NO_2$                              | 193 |
|          | $HNO_2 \rightarrow HO + NO$                                                       | 164 |
|          | $C_6H_3O_{12}N_9 \rightarrow C_6H_3O_8N_7 + NO_2 + NO_2$                          | 137 |
|          | $C_6H_3O_8N_7 \rightarrow C_6H_3O_6N_6 + NO_2$                                    | 112 |
|          | $NO_2 \rightarrow O + NO$                                                         | 89  |



Figure S5. The Laplacian bond order of TNTNB



Figure S6. The shock decomposition pathways at 7.0 km/s within 1 ps (The reaction code names and their frequencies are listed in square brackets. Several reactions with a high frequency in this period are marked in blue.)



Figure S7. The shock decomposition pathways at 7.5 km/s within 1 ps (The reaction code names and their frequencies are listed in square brackets. Several reactions with a high frequency in this period are marked in blue.)



Figure S8. The shock decomposition pathways at 8.5 km/s within 1 ps (The reaction code names and their frequencies are listed in square brackets. Several reactions with a high frequency in this period are marked in blue.)