Ultralow Lattice Thermal Conductivity of Binary Compounds A₂B (A=Cs, Rb & B=Se, Te) with Higher-Order Anharmonicity Correction

Shuming Zeng,
¹ Lei ${\rm Fang},^1$ Yusong Tu,^1 M. Zulfiqar,² and Geng
 ${\rm Li}^3$

¹College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, P. R. China*
²Department of Physics, University of Sargodha, 40100 Sargodha, Pakistan[†]
³School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China[‡]

(Dated: March 3, 2023)

^{*} zengsm@yzu.edu.cn

 $^{^{\}dagger}\ muhammad.zulfiqar@uos.edu.pk$

 $^{^{\}ddagger}$ ligeng@nscc-tj.cn

TABLE SI. The interatomic distances of the symmetrically independent atoms in the binary compounds A₂B (A=Cs, Rb & B=Se, Te). In the A₂B system, there are three unequal atoms, denoted by A1, A2 and B1, whose coordinates are (0.0, 0.0, 0.0), (0.333, 0.667, 0.250) and (0.333, 0.667, 0.750), respectively. The distances between A1 and A2, A1 and B1 and A2 and B1 are denoted by d_{12} , d_{13} and d_{23} respectively.

Material	d_{12}	d_{13}	d_{23}
Cs_2Se	3.942	3.942	3.425
Cs_2Te	4.155	4.155	3.628
Rb_2Se	3.779	3.779	3.276
$\mathrm{Rb}_{2}\mathrm{Te}$	3.995	3.995	3.480

FIG. S1. The phonon band gap(PBG) of Cs_2Se at different temperature(K).

Material	Percentage	$\omega(a,b)$	$\omega(c)$
		${\rm cm}^{-1}$	cm^{-1}
Cs_2Se	50%	26	21
	60%	33	24
	70%	41	28
	80%	52	42
	90%	63	58
Cs_2Te	50%	26	20
	60%	32	25
	70%	38	32
	80%	46	50
	90%	58	62
$ m Rb_2Se$	50%	30	26
	60%	34	30
	70%	46	36
	80%	59	53
	90%	70	74
$ m Rb_2Te$	50%	30	26
	60%	34	30
	70%	40	36
	80%	50	49
	90%	63	70

TABLE SII. The frequencies corresponding to the cumulative lattice thermal conductivity of 50%, 60%, 70%, 80%, and 90% are presented. Here, $\omega(a, b)$ represents the frequency corresponding to the a(b)-direction and $\omega(c)$ represents the frequency corresponding to the c-direction.