A collaborative diffusion mechanism of multiple atoms during Cu-Ag bimetal surface reconstruction

Xue Yan^a, Xiangxiang Wang^a, Jingli Han^d, Xiangjian Du^c, Zhongyi Liu^b, Yongpeng Yang^{a,b*}

^aHenan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China

^bGreen Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001,

China

^cCollege of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052,

China

^dHenan Engineering Research Center of Catalysis and Separation of Cyclohexanol, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

Corresponding author E-mail: ypyang2017@zzu.edu.cn (Yongpeng Yang)

Fig. S1 The configuration and relative energy of direct outward diffusion of vertex atom. (a-b) Cu₁₄₇@Ag₁₆₂. (c-d) Cu₃₀₉@Ag₂₅₂.

Fig. S2 The energy of (a) $Cu_{13}@Ag_{42}$, and $Cu_{13}@Ag_{41}$ with vacancy in (b) vertex site and (c) edge site. The energy of (d) $Cu_{55}@Ag_{92}$, and $Cu_{55}@Ag_{91}$ with vacancy in (e) vertex site and (f) edge site.

Fig. S3 Relative energy of surface diffusion of (a) $Cu_{147}@Ag_{162}$ and (b) $Cu_{309}@Ag_{252}$, direct outer diffusion (DOD) and collaborative outer diffusion (COD).

Fig. S4 The average surface Ag-Ag bond lengths for pure Ag NPs.

Fig. S5 Lattice parameter of Ag(111) and Cu(111) surface.

Fig. S6 (a) Directly inward diffusion process of surface Ag atom (DID-edge). (b) Collaborative inward diffusion process of surface Ag atom (CID-edge).

Fig. S7 Relative energy of outward diffusion of Cu@AgCu₁ NPs. (a) Cu₁₃@Ag₄₁Cu₁.
(b) Cu₅₅@Ag₉₁Cu₁. (c) Cu₁₄₇@Ag₁₆₁Cu₁. (d) Cu₃₀₉@Ag₂₅₁Cu₁.

Fig. S8 Diffusion paths of $Cu_{55}@Ag_{92}(CO)_1$. (a) Directly outward diffusion of vertex atom, abbreviated as DOD-vertex_(Ag-CO). (b) Directly outward diffusion of edge atom, abbreviated as DOD-edge_(Ag-CO). (c) Outward diffusion of edge atom with collaborative diffusion of vertex atom, abbreviated as COD-(edge_(Ag-CO)/vertex). (d) Outward diffusion of vertex atom with collaborative diffusion of edge atom, abbreviated as COD-(vertex_(Ag-CO)/edge). (e) Outward diffusion of facet atom with collaborative diffusion of edge and vertex atom, abbreviated as COD-(facet_(Ag-CO)/edge-vertex). (f) Outward diffusion of facet atom with collaborative diffusion of edge atom, abbreviated as COD-(facet_(Ag-CO)/edge).

Fig. S9 Relative energy of outward diffusion in Cu@Ag NPs after one CO adsorbed. (a) $Cu_{13}@Ag_{42}(CO)_1$. (b) $Cu_{55}@Ag_{92}(CO)_1$. (c) $Cu_{147}@Ag_{162}(CO)_1$. (d)

Cu₃₀₉@Ag₂₅₂(CO)₁.

Fig. S10 Relative energy of outer diffusion in Cu@AgCu₁ NPs with one CO adsorbed. (a) $Cu_{13}@Ag_{41}Cu_1(CO)_1$. (b) $Cu_{55}@Ag_{91}Cu_1(CO)_1$. (c) $Cu_{147}@Ag_{161}Cu_1(CO)_1$. (d) $Cu_{309}@Ag_{251}Cu_1(CO)_1$.

Fig. S11 Relative energy of outer diffusion of edge Ag atom with collaborative of vertex Cu atom (COD-edge_(Ag-CO)/vertex_{Cu}).

Fig. S12 Snapshots of icosahedral $Cu_{13}@Ag_{42}(CO)_{36}$ during AIMD simulation at 500

Κ.

	vertex	edge	facet
Cu ₁₃ @Ag ₄₂ _Ico	-1.27	-1.33	
Cu ₅₅ @Ag ₉₂ _Ico	-1.63	-1.57	-1.53
Cu ₁₄₇ @Ag ₁₆₂ _Ico	-1.10	-1.05	-0.98
Cu ₃₀₉ @Ag ₂₅₂ _Ico	-1.02	-0.92	-0.88

Table S1 The adsorption energies of CO (in eV) in Cu@Ag NPs

 Table S2 The segregation energies (in eV) in Cu@Ag NPs

	Without CO ^a			One CO ^b		
	vertex	edge	facet	vertex	edge	facet
Cu ₁₃ @Ag ₄₂ _Ico	0.25	0.25		-0.25	-0.26	
Cu ₅₅ @Ag ₉₂ _Ico	0.13	0.01	0.01	-0.29	-0.43	-0.47
Cu ₁₄₇ @Ag ₁₆₂ _Ico	0.17	0.09	0.01	-0.34	-0.52	-0.53
Cu ₃₀₉ @Ag ₂₅₂ _Ico	0.14	0.04	-0.01	-0.37	-0.44	-0.59

^aSegregation energies with one Cu atom segregating to surface. ^bSegregation energies

with one Cu atom segregating to surface with one CO adsorbed.