Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting Information

Asymmetric Janus functionalization induced magnetization and

switchable out-of-plane polarization in 2D MXene Mo₂CXX'

Chao Xin,*^{a,b} Zhen Fan,^a Zhixin Sun,^a Hui Li,^a Guangyong Jin,^a Feng Pan,*^b and Yu Sui,*^c

^a School of Science, Changchun University of Science and Technology, Jilin Key Laboratory of Solidstate Laser Technology and Application, Changchun 130022, China

^b School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China

^c Department of Physics, Harbin Institute of Technology, Harbin 150001, China

Figure ESI1. Side views of Mo_2C -FO MXene lattice. There are nine possible sites for X atoms decoration on each side of the Janus surface.

Figure ESI2. The phonon spectra for (a) Mo_2C -FO; (b) Mo_2C -F-OH; (c) Mo_2C -O-OH; (d) Mo_2C -F₂; (e) Mo_2C -O₂; (f) Mo_2C -(OH)₂.

Figure ESI3. Variations of the total free energy of Janus during ab initio molecular dynamics simulations at 300 K. (a) Mo₂C-FO; (b) Mo₂C-F-OH; (c) Mo₂C-O-OH; (d) Mo₂C-F₂; (e) Mo₂C-O₂; (f) Mo₂C-(OH)₂.

Figure ESI4. The spin polarized d orbital projected band structure of Mo ion for six functionalized Mo₂C MXenes: asymmetry Janus (a) Mo₂C-OOH, (b) Mo₂C-(OH)₂, (c) Mo₂C-F₂, and (d) Mo₂C-O₂ and the Fermi level defines zero energy.

Figure ESI5. The spin density $(\rho_{\uparrow} - \rho_{\downarrow})$ map of (a) Mo₂C-FO; (b) Mo₂C-F-OH; (c) Mo₂C-O-OH; (d) Mo₂C-F₂; (e) Mo₂C-O₂; (f) Mo₂C-(OH)₂. The green arrow represents the direction of electric

polarization.

Figure ESI6. Specific heat Cv as a function of temperature for (a) Mo_2C -FO; (b) Mo_2C -F-OH; (c)

Mo₂C-O-OH; (d) Mo₂C-F₂; (e) Mo₂C-O₂; (f) Mo₂C-(OH)₂.

Figure ESI7. Side views of Mo₂C-FO MXene lattice. Five phases include non-centrosymmetric P3m1, Pm group, and centrosymmetric $P2_1/m$. The green arrow represents the direction of electric polarization.

Figure ESI8. Total energy as function of the difference of layer distance Δd for Mo₂C-F-OH and Mo₂C-O-OH system.

Figure ESI9. Calculated band gap with different U_{eff} values of Mo ion for three magnetic structures (FM, AFM1, AFM2).

Figure ESI10. The band structure of Mo2C-O-OH calculated by (a) DFT-D2, (b) DFT-D3.

hubbard U values of Mo ion.							
	<i>U</i> =0	<i>U</i> =1	<i>U</i> =2	<i>U</i> =3	<i>U</i> =4	<i>U</i> =5	<i>U</i> =6
FM	-91.4869	-86.5886	-81.6545	-76.7160	-72.9473	-68.6091	-65.9987
AFM1	-91.4864	-86.4594	-81.6256	-76.9326	-72.9659	-69.5811	-66.6318
AFM2	-91.4871	-86.5888	-81.7033	-76.8244	-72.7801	-69.3298	-66.4711

Table ESI1. Calculated total energy for three magnetic orders (FM, AFM1, AFM2) with different hubbard *U* values of Mo ion.

Tables

Table ESI2. Calculated magnetic moments for three magnetic orders (FM, AFM1, AFM2) with different hubbard U values of Mo ion.

	<i>U</i> =0	<i>U</i> =1	<i>U</i> =2	<i>U</i> =3	<i>U</i> =4	<i>U</i> =5	<i>U</i> =6
(Mo1/Mo2) _{FM}	0/0	0/0	0.22/0.22	0.44/1.45	2.41/-1.61	2.87/2.30	3.03/1.98
(Mo1/Mo2) _{AFM1}	0/0	0/0	0/0	1.32/-0.92	2.18/-1.72	2.76/-1.86	2.94/-2.03
(Mo1/Mo2) _{AFM2}	0/0	0/0	0.03/0	0.17/-0.17	2.15/-1.74	2.75/-1.85	2.90/-1.97

Table ESI3 Vacuum-level, level shift, and work function for six functionalized Mo₂C-MXenes.

MXenes	1Vacuum-Level (eV)	2Vacuum-Level (eV)	level shift (Δ)	Work Function (eV)
Mo ₂ C-F-O	3.916	3.204	0.712	6.250
Mo ₂ C-F-OH	4.880	0.808	4.072	5.945
Mo ₂ C-O-OH	5.572	0.694	4.878	6.315
Mo ₂ C-F ₂	3.259	3.259	0.000	5.847
Mo ₂ C-O ₂	3.808	3.808	0.000	6.294
Mo ₂ C-OH ₂	2.451	2.451	0.000	1.842

Table ESI4. Calculated lattice parameters (Å) and band gap (eV) for DFT-D2 and DFT-D3 vdw correction.

Vdw	а	b	Band gap			
DFT-D2	3.29	3.19	0.36			
DFT-D3	3.28	3.18	0.43			