Supporting Information for

Computational mining of GeH-based Janus III-VI van der Waals

heterostructures for solar cell applications

Ruifeng Li^a, Zhichao Shi^a, Rui Xiong^a, Zhou Cui^a, Yinggan Zhang^b, Chao Xu^c, Jingying Zheng^a, Bo Wu^a, Baisheng Sa^{a,*} and Cuilian Wen^{a,**} ^a Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, P. R. China ^b College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China

^c Xiamen Talentmats New Materials Science & Technology Co., Ltd., Xiamen 361015, P. R. China

Corresponding Authors: bssa@fzu.edu.cn (B. Sa), clwen@fzu.edu.cn (C. Wen).

System	Configuration	ΔE	d	а
Ga ₂ SeTe/GeH	d	77	3.155	4.000
	e	0	2.359	4.007
	f	3	2.282	4.011
In ₂ SSe/GeH	d	82	2.965	4.011
	e	4	2.160	4.017
	f	0	2.038	4.023
In ₂ STe/GeH	d	85	3.112	4.087
	e	0	2.277	4.096
	f	5	2.223	4.100
In ₂ SeTe/GeH	d	88	3.138	4.126
	e	0	2.221	4.135
	f	3	2.195	4.141

Table S1. The energy differences of ΔE (meV) and interlayer distance *d* (Å) as well as the lattice constants *a* (Å) for heterostructures

Table S2. The electron gains of the isolated In₂STe $\sum P_{\text{In}_2\text{STe}}$ (*e*), and GeH monolayers $\sum P_{\text{GeH}}(e)$ based on different methods

Method	$\sum P_{\text{GeH}}$	$\sum P_{\text{In}_2\text{STe}}$
Differential Charge Densities	0.000019	-0.000019
Bader Charge	0.012	-0.012

Figure S1. HSE06 band structures of (a) Ga_2SeTe , (b) In_2SSe , (c) In_2SeTe , (d) In_2STe and (e) GeH monolayers. The first Brillouin zone with high-symmetry points is shown in the inset of (a). (l) The band edge alignments for the monolayers. The red pillars indicate the band edge alignments of the X side, and the orange pillars indicate the band edge alignments of the Y side.

Figure S2. Projected HSE06 band of the most stable $M_2XY/GeH vdW$ heterostructures among configurations (a) to (c). Red and blue circles represent the projected weights of M_2XY and GeH monolayers, respectively.

Figure S3. HSE06 band structures of (a) In_2SeTe and (b) GeH monolayers. Red and blue curves represent the band structures for intrinsic monolayers and the mutually independent monolayers fixed in the lattice of In_2STe/GeH vdW heterostructure, respectively.

Figure S4. Band-decomposed charge density of the (a) VBM and (b) CBM for In_2STe/GeH heterostructure.

Figure S5. Total energy changes and structure snapshots from AIMD calculations at (a) 600 K and (b) 900 K of In₂STe/GeH vdW heterostructure.

Figure S6. (a) Using an orthorhombic lattice to calculate In₂STe/GeH vdW heterostructure and the blue shaded quad indicates the initial hexagonal lattice. (b) Band structure of In₂STe/GeH vdW heterostructure by the PBE method. (c) Total energy shift $E - E_0$ and (d) Band edge positions of In₂STe/GeH vdW heterostructure as functions of the uniaxial strain ε along with both the armchair (x) and zigzag (y) directions by the PBE method. The vacuum level is set to 0 for reference in (d) figure.