## Supporting Information for

# First Principles Calculation of Terahertz Spectroscopy of Molecular Crystals: the crucial role of periodic boundary conditions benchmarked with experimental L-ascorbic acid spectra ${ }^{\dagger}$ 

Ying Wang, ${ }^{a}$ Huifang Ma, ${ }^{a}$ Yanzhao Yang, ${ }^{\text {b }}$ Jiantao Qi, ${ }^{\text {c }}$ Guiming Zhang, ${ }^{\text {b }}$ Hao Ren, *a and Wenyue Guo*a

${ }^{\text {a }}$ School of Materials Science and Engineering, China University of Petroleum (East
China), Qingdao, Shandong, 266580, China.
${ }^{\mathrm{b}}$ The 41st Institute of China Electronics Technology Group Corporation, Qingdao Shandong 266555, China.
${ }^{\text {c }}$ College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
*Corresponding authors:
E-mail addressed: renh@upc.edu.cn (Hao Ren); wyguo@upc.edu.cn (Wenyue Guo)


















Fig. S1 The vibration modes corresponding to each absorption peak in the calculated spectrum of $\mathrm{L}-\mathrm{AA}_{1}, \mathrm{~L}^{2} \mathrm{AA}_{4}, \mathrm{~L}^{2}-\mathrm{AA}_{24(1)}, \mathrm{L}^{2}-\mathrm{AA}_{24(2)}, \mathrm{L}-\mathrm{AA}_{108}$.

Table S1. The assignment of each vibrational mode in Fig. S1 (the molecules 1, 2, 3, and 4 are the upper left, upper right, lower left, and lower right molecules in the model, respectively).

| Model | Frequency/THz | Vibrational Mode |
| :---: | :---: | :---: |
| L-AA ${ }_{1}$ | 1.49 | The intra-rotation of the |
|  |  | $\mathrm{HCOH}-\mathrm{CH}_{2} \mathrm{OH}$ group |
| L-AA 4 | 0.89 | The collective vibration |
|  |  | involving molecules 2, 4 and |
|  |  | $\mathrm{HCOH}-\mathrm{CH}_{2} \mathrm{OH}$ group in |
|  |  | molecule 1 |
| L-AA ${ }_{4}$ | 1.13 | Mainly the intramolecular O- |
|  |  | H vibration |
| L-AA 4 | 1.71 | Mainly the $\mathrm{O}-\mathrm{H}$ vibration of |
|  |  | molecules 2, 3 |
| L-AA ${ }_{24(1)}$ | 1.61 | The vibration of $\mathrm{CH}_{2} \mathrm{OH}$ - |
|  |  | $\mathrm{CH}_{2} \mathrm{O}$ and five-membered |
|  |  | ring in molecule 2 |
| L-AA ${ }_{24(1)}$ | 1.82 | The vibration of five- |
|  |  | membered ring, $\mathrm{CH}_{2} \mathrm{O}$, two |
|  |  | OH groups in molecule 1 and |
|  |  | vibration of molecule 4 |
| L-AA ${ }_{24(1)}$ | 1.97 | Mainly the horizontal |
|  |  | vibration involving molecules |
|  |  | $1,2,4$, respectively |
| L-AA ${ }_{24(2)}$ | 1.56 | The vibration involving |
|  |  | molecule 3 and $\mathrm{CH}_{2} \mathrm{OH}$ group |
|  |  | in molecule 4 |
| $\mathrm{L}-\mathrm{AA}_{24(2)}$ | 1.72 | Collective vibration of |
|  |  | molecules 2, 3 and 4 |
| L-AA ${ }_{24(2)}$ | 1.82 | The vibration of five- |

membered ring, $\mathrm{CH}_{2} \mathrm{O}$, two
OH groups in molecule 1
Mainly the horizontal vibration involving molecules

1, 2 and vertical vibration involving 3

The vibration of molecule 2 relative to molecule 3

The vibration of fivemembered ring, $\mathrm{CH}_{2} \mathrm{OH}-$ $\mathrm{CH}_{2} \mathrm{O}$, one OH group in molecule 1 and vibration of $\mathrm{CH}_{2} \mathrm{OH}$ in molecule 4 Mainly the vibration involving molecules 1 and 3

Table S2 The numerical value of the internal product of the vibration of the absorption peak in the calculation results of the periodic model.

|  | opt-B88 <br> opt-B86 | opt-B86 <br> opt-PBE | opt-PBE |
| :--- | :--- | :--- | :--- |



Fig. S2 Full spectra calculated by the cluster models.


Fig. S3 Full spectra calculated by the periodic structure model.
(a)


L-AA ${ }_{108(4 a)}$
(c)


L-AA ${ }_{108(6 a)}$
(e)

(g)

(b)

(d)


(h)


Fig. S4 Cluster models the of L-AA crystal with $4(\mathrm{a}, \mathrm{b}), 6(\mathrm{c}, \mathrm{d}), 8(\mathrm{e}, \mathrm{f})$, and $10(\mathrm{~g}, \mathrm{~h})$ monomers allowed to be relaxed in a 108-molecule matrix. The inner (ball-sticks) and outer (lines) layers represent the cluster models and their surroundings, respectively, treated with quantum chemical and semiempirical methods. For each size of the cluster, we built two different models by selecting different monomers. Gray, red, and white balls and lines denote carbon, oxygen, and hydrogen atoms, respectively.


Fig. S5 Comparison of the calculated THz absorption spectra of L-AA crystal. Calculations are based on different cluster models (Fig. S4).

Table S3 Calculation results of single molecule using B3LYP functional in VASP compared with
Gaussian.

| Gaussian/B3LYP/6-311g(d,p) | VASP/B3LYP/500 eV |
| :---: | :---: |
| 1.49 | 1.29 |
| 2.10 | 2.17 |
| 2.73 | 3.08 |
| 3.96 | 3.80 |
| 4.33 | 4.24 |
| 5.84 | 4.95 |
| 6.67 | 5.56 |
| 7.29 | 6.05 |
| 8.01 | 6.65 |
| 8.79 | 8.01 |
| 9.49 | 9.22 |
| 10.35 | 9.78 |
| 10.99 | 11.81 |
| 12.24 | 12.49 |
| 14.19 | 12.82 |
| 14.80 | 13.85 |
| 15.85 | 15.68 |
| 16.62 | 16.92 |
| 18.67 | 18.08 |
| 19.70 | 19.87 |
| 20.94 | 20.16 |
| 21.94 | 22.15 |
| 23.53 | 23.85 |
| 25.19 | 24.99 |
| 26.95 | 28.54 |
| 28.98 | 28.97 |
| 30.11 | 30.04 |
| 31.24 | 30.69 |
| 31.26 | 30.95 |
| 31.86 | 32.15 |
| 32.58 | 32.39 |
| 34.05 | 33.64 |
| 34.58 | 34.22 |
| 36.52 | 35.95 |
| 37.10 | 37.06 |
| 37.74 | 37.35 |
| 37.91 | 37.68 |
| 38.95 | 38.36 |
| 39.56 | 39.29 |
| 40.35 | 40.24 |


| 41.10 | 40.37 |
| :---: | :---: |
| 41.48 | 41.54 |
| 41.60 | 42.11 |
| 43.69 | 44.14 |
| 51.41 | 51.04 |
| 54.39 | 52.77 |
| 86.40 | 87.00 |
| 87.02 | 87.46 |
| 87.31 | 88.53 |
| 88.86 | 88.70 |
| 109.13 | 109.06 |
| 109.53 | 110.43 |
| 109.96 | 111.73 |
| 110.17 | 112.71 |

