**Supplementary Information (SI)** 

## On the concentration polarisation in molten Li salts and borate-based Li ionic liquids

Keisuke Shigenobu<sup>1</sup>, Frederik Philippi,<sup>1</sup> Seiji Tsuzuki<sup>2</sup>, Hisashi Kokubo<sup>1</sup>, Kaoru Dokko<sup>1,2</sup>,

Masayoshi Watanabe<sup>2</sup> and Kazuhide Ueno<sup>1, 2, \*</sup>

<sup>1</sup> Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai,

Hodogaya-ku, Yokohama 240-8501, Japan.

<sup>2</sup> Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku,

Yokohama 240-8501, Japan.

CORRESPONDING AUTHOR: To whom correspondence should be addressed.

Kazuhide Ueno: Telephone/Fax: +81-45-339-3951. E-mail: ueno-kazuhide-rc@ynu.ac.jp

## Synthesis

Triethylene glycol monomethyl ether (mPEG3-OH), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP-OH) and trifluoroacetic acid (TFA-OH) were dehydrated by using the Zeolite molecular sieves. Under an argon atmosphere, to the 2 mol dm<sup>-3</sup> solution of LiBH<sub>4</sub> in tetrahydrofuran (THF) (20.0 mmol, 10.00 mL) at -78 °C was added the mixture of 2 mole equivalents of mPEG3-OH (40.0 mmol, 6.32 mL) and 15 mL dry THF dropwise over 10 min and the reaction mixture was stirred for 1 day with slowly and gradually elevating the temperature to 40 °C. After the completion of the H<sub>2</sub> gas evolution, to the reaction mixture at -78 °C was added the mixture of 2 mole equivalents of HFIP (40.0 mmol, 4.15 mL) for Li[B(mPEG3)<sub>2</sub>(OHFIP)<sub>2</sub>] or TFA–OH (40.0 mmol, 3.06 mL) for Li[B(mPEG3)<sub>2</sub>(OTFA)<sub>2</sub>] and 7 mL dry THF dropwise over 10 min under an argon atmosphere and the reaction mixture was stirred in the same way as the previous step. For the synthesis of Li salts: Li[B(mPEG3)<sub>4</sub>] and Li[B(OTFA)<sub>4</sub>], the reaction was completed at the first step by adding 4 mole equivalents of mPEG3-OH (40.0 mmol, 6.32 mL) or TFA-OH (40.0 mmol, 3.06 mL) to the 2 mol dm<sup>-3</sup> solution of LiBH<sub>4</sub> in tetrahydrofuran (THF) (10.0 mmol, 5.00 mL).

After the completion of the gas evolution, the reaction solvent was thoroughly evaporated off, and the residue was dried *in vacuo* at 70 °C for 1 day to give  $\text{Li}[B(mPEG3)_2(OHFIP)_2]$  or  $\text{Li}[B(mPEG3)_2(OTFA)_2]$  as a viscous, colourless and transparent liquid,  $\text{Li}[B(mPEG3)_4]$  as a sticky, colourless and transparent solid and  $\text{Li}[B(OTFA)_4]$  as a white-coloured solid. 13.88 g (20.5 mmol) of  $\text{Li}[B(mPEG3)_2(OHFIP)_2]$  was obtained in 102 % yield, 11.22 g (19.7 mmol) of  $\text{Li}[B(mPEG3)_2(OTFA)_2]$  in 98 %, 6.45 g (9.61 mmol) of  $\text{Li}[B(mPEG3)_4]$  in 96 % and 2.249 g (4.80 mmol) of Li[B(OTFA)<sub>4</sub>] in 48 %. The yield of Li ionic liquids depends on the accuracy in weighing and the remaining unreacted reagents or solvated-solvents such as mPEG3–OH and THF, however, almost 100 % yield (except Li[B(OTFA)<sub>4</sub>]) was achieved as expected two-step substitution reaction of LiBH<sub>4</sub>. The lowest conversion of Li[B(OTFA)<sub>4</sub>] would arise from its thermal stability; 12 % of its mass was reduced for 120 min at 70 °C under N<sub>2</sub> and atmospheric pressure (**Figure S1**). Thus, Li[B(OTFA)<sub>4</sub>] would be lost during the evaporation and drying process.

## Thermogravimetric data



Figure S1. Isothermal thermogravimetric curve obtained for Li[B(OTFA)<sub>4</sub>] at 70 °C.



**Figure S2.** <sup>1</sup>H NMR spectra of (a) Li[B(mPEG3)<sub>2</sub>(OHFIP)<sub>2</sub>] and (b) Li[B(mPEG3)<sub>2</sub>(OHFIP)<sub>2</sub>] from 3.0 ppm to 5.0 ppm.



**Figure S3.** (a) <sup>1</sup>H NMR spectra of Li[B(mPEG3)<sub>4</sub>] from 3.0 ppm to 4.5 ppm and (b) <sup>11</sup>B NMR spectra of Li[B(mPEG3)<sub>4</sub>] from -60 ppm to 60 ppm.



Figure S4. <sup>11</sup>B NMR spectrum of Li[B(OTFA)<sub>4</sub>] from -10 ppm to 10 ppm.



**Figure S5.** (a) <sup>1</sup>H NMR spectra of B(mPEG3)<sub>3</sub> from 3.0 ppm to 4.5 ppm and (b) <sup>11</sup>B NMR spectra of B(mPEG3)<sub>3</sub> from -60 ppm to 60 ppm.



**Figure S6.** (a) <sup>1</sup>H NMR spectra of Li[TOTO] from 3.0 ppm to 4.5 ppm and <sup>13</sup>C NMR spectra of Li[TOTO] (b) from 58 ppm to 80 ppm and (c) from 58 ppm to 180 ppm.



**Figure S7.** VT NMR spectra regarding <sup>11</sup>B of Li[B(mPEG3)<sub>2</sub>(OHFIP)<sub>2</sub>].



Figure S8. FAB-MS spectrum of <sup>11</sup>B of Li[B(mPEG3)<sub>2</sub>(OHFIP)<sub>2</sub>].

## **DFT calculations**



**Figure S9**. The B3LYP/6-311++G\*\* level optimised geometries of (a) LiB(OHFIP)<sub>4</sub> and (b) LiB(OTFA)<sub>4</sub>. Purple: Li<sup>+</sup>, pink: B, red: O, grey: C, light grey: H and sky blue: F.

| Table S1 The energies of I | i ionic liquids, | borate esters, and | l Li salts ª. |
|----------------------------|------------------|--------------------|---------------|
|----------------------------|------------------|--------------------|---------------|

|                            | E <sub>LIIL</sub> b | E <sub>sol</sub> b | Esaltb    |
|----------------------------|---------------------|--------------------|-----------|
| Li[B(OHFIP) <sub>4</sub> ] | -3190.4562          | —                  | _         |
| B(OHFIP) <sub>3</sub>      | —                   | -2393.3599         | _         |
| LiOHFIP                    | —                   | —                  | -797.0386 |
| Li[B(OTFA) <sub>4</sub> ]  | -2138.103           | —                  | _         |
| B(OTFA) <sub>3</sub>       | —                   | -1604.0537         | _         |
| LiOTFA                     | _                   | _                  | -533.9721 |

a: The geometries were optimised at the B3LYP/6-311++G\*\* level.

b: Energy in atomic units.