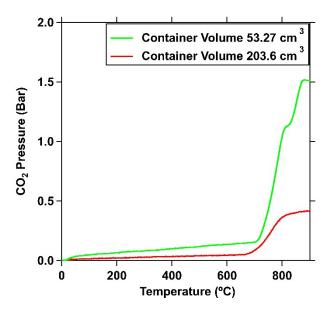
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

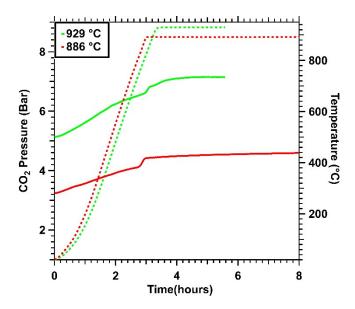
Supplementary Information:

Thermochemical Energy Storage in Barium Carbonate Enhanced by Iron (III) Oxide

Kyran Williamson,^{1*} Kasper T. Møller,^{1,2} Anita M. D'Angelo,³ Terry D. Humphries,¹ Mark Paskevicius,^{1*} Craig E. Buckley,¹


¹Physics and Astronomy, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

²Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, Aarhus, DK-8200, Denmark.


³Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia

*Corresponding Authors:

Kyran Williamson, kyran.williamson@postgrad.curtin.edu.au and Mark Paskevicius, m.paskevicius@curtin.edu.au

Figure S1: $^{\sim}$ 1 g of BaCO₃-Fe₂O₃ heated from room temperature to 900 °C. $\Delta T/\Delta t = 10$ °C min⁻¹) using a sealed volume in a Sieverts apparatus at $p_{\text{initial}}(\text{CO}_2) = 10^{-2}$ bar: using a volume of either 53.27 cm³ (green curve) or 203.6 cm³ (red curve), which influences the CO₂ pressure achieved during decomposition of the BaCO₃-Fe₂O₃ RCC.

Figure S2: $^{\circ}$ 1 g of BaCO₃-Fe₂O₃ heated from room temperature to 900 °C. $\Delta T/\Delta t$ = 10 °C min⁻¹) in a sealed volume (53.27 cm³) using Sieverts apparatus. Dashed curve represents the temperature and solid curve represents the pressure.