Supplementar	ry data	
Table S1	Fluorescence decay parameters for NCS1 and 1,8-ANS: NCS1 complex in the presence/absence of metal ions.	Page# 2
Table S1	CCS values determined for Tb ³⁺ and Eu ³⁺ ion adducts at 9+ charge state using TIMS-MS.	Page# 3
Figure S1	Determination of the stoichiometry of Tb ³⁺ /Eu ³⁺ bound NCS1.	Page# 4
Figure S2	Far-UV circular dichroism spectra of NCS1 in absence and presence	Page# 5
	of metal ions.	
Figure S3	Frequency domain intensity decay of apo- and metal bound NCS1.	Page# 6
Figure S4	Titration curves of Tb^{3+}/Eu^{3+} binding to $Ca^{2+}NCS1:1,8-ANS$.	Page# 7
Figure S5	Frequency domain intensity decay of apo- and metal bound	Page# 8
	NCS1:1,8-ANS complex.	
Figure S6	Luminescence decay of Eu ³⁺ itself and in presence of NCS1.	Page# 9
Figure S7	Steady state anisotropy of isolated D2R peptide and NCS1:D2R	Page# 10
	complex in the absence or presence of metal ions.	
Figure S8	Expanded view of the 9+ charge state with annotated adduct species	Page# 11
	and the isotopic pattern of the ion [M•2Na•Eu+4H] ⁹⁺ shown in the	
	inset (A). Typical broadband nESI-FT-ICR MS spectrum of NCS1	
	in the presence of Eu^{3+} (B). Deconvoluted spectrum showing the	
	neutral species. The isotopic pattern shown in the inset confirms the	
	theoretical isotopic average mass of the NCS1 protein 22.976 kDa	
	(C).	
Figure S9	Comparison of experimental isotopic distributions of NCS1:Tb (red)	Page# 12
	and NCS1:Eu (blue) adduct species obtained from nESI-FT-ICR MS	
	with their theoretical isotope patterns (black).	D // 42
Figure S10	11MS CCS _{N2} profiles for the charge state 9+ of NCS1 in the presence	Page# 13
	of Tb ³⁺ (left) and Eu ³⁺ (right) obtained from nESI-TIMS-TOF MS.	

Table S1: Fluorescence decay parameters for NCS1 and 1,8-ANS: NCS1 complex in the presence/absence of								
NCC1	- (f(0/)	- ($\int (0/)$	- ($\int (0/)$		2
NCSI	τ_1 (ns)	$J_{1}(\%)$	τ_2 (ns)	$J_{2}(\%)$	τ_{3} (ns)	$J_{3}(\%)$	$<\tau>(ns)$	χ²
Аро	0.66	9	3.20	56	6.30	36	4.11	0.9
Ca ²⁺	0.64	16	2.99	53	5.65	41	3.63	1.5
Tb ³⁺	0.29	5	2.12	36	4.84	59	3.60	2.0
Eu ³⁺	0.47	8	2.45	44	4.99	48	3.54	1.5
NCS1:ANS								
Аро	0.28	8	4.25	15	16.60	77	13.50	1.8
Ca ²⁺	0.28	7	4.47	17	17.20	76	14.05	1.5
Tb ³⁺	0.28	7	5.08	14	17.45	79	14.80	1.1
Eu ³⁺	0.28	7	5.12	14	17.20	79	14.25	1.1

Table S2: CCS values determined for Tb ³⁺ and	Eu ³⁺ ion adducts at 9+ charge state using
TIMS-MS.	
Th ³⁺ ion	Eu ³⁺ ion

Tb ³⁻	⁺ ion	Eu ³⁺ ion		
$^{\text{TIMS}}\text{CCS}_{N2}$ (Å ²)	Ion specie	$^{\text{TIMS}}\text{CCS}_{N2}(\text{\AA}^2)$	Ion specie	
2182	[M-3Ca+3H] ⁹⁺	2192	[M-3Ca+3H] ⁹⁺	
2204	[M-Tb+6H] ⁹⁺	2201	[M-3Ca-Na+2H]9+	
2189	[M-Ca-Tb+4H]9+	2204	[M-4Ca+H] ⁹⁺	
2201	[M-2Ca-Tb+2H] ⁹⁺	2198	[M-2Na-Eu+4H] ⁹⁺	
2179	[M-3Ca-Tb] ⁹⁺	2179	[M-2Ca-Eu+2H]9+	
2195	[M-2Tb+3H] ⁹⁺	2163	[M-3Ca-Eu] ⁹⁺	

Figure S1: Determination of the stoichiometry of Tb^{3+}/Eu^{3+} bound NCS1.

Figure S2: Far-UV circular dichroism spectra of NCS1 in absence and presence of metal ions. Conditions as in the figure 1.

Figure S3: Frequency domain intensity decay of apo- and metal bound NCS1. Solid and open symbols indicate modulation ratio and phase delay data points, respectively. The solid line corresponds to the fit of the experimental data using a sum of three discreet exponential decay model. Conditions: 10 μ M NCS1, 20 mM Tris buffer, pH 7.40, and 1 mM EDTA or 1 mM Ca²⁺, 40 μ M Tb³⁺, 40 μ M Eu³⁺.

Figure S4: Titration curves of Tb³⁺/Eu³⁺ binding to Ca²⁺NCS1:1,8-ANS. Conditions: 10 μ M NCS1, 20 μ M 1,8-ANS, 1 mM Ca²⁺, 40 μ M Tb³⁺, 32 μ M Eu³⁺ and λ_{exc} =350 nm.

Figure S5: Frequency domain intensity decay of apo- and metal bound NCS1:1,8-ANS complex. Open and solid symbols indicate modulation ratio and phase delay data points, respectively. The solid line corresponds to the fit of the experimental data using a sum of three discreet exponential decay model. Conditions: $10 \mu M$ NCS1, $20 \mu M$ 1,8-ANS, 20 mM Tris buffer, pH 7.40, and 1 mM EDTA or 1 mM Ca²⁺, $40 \mu M$ Tb³⁺, $40 \mu M$ Eu³⁺.

Figure S6: Luminescence decay of Eu^{3+} itself and in presence of NCS1. Conditions: 40 μM NCS1 and 20 μM $Eu^{3+}.$

Figure S7: Steady state anisotropy of isolated D2R peptide and NCS1:D2R complex in the absence or presence of metal ions. Conditions: 10 μ M NCS1, 500 nM D2R, 1 mM EDTA, 1 mM Ca²⁺, 40 μ M Tb³⁺, 40 μ M Eu³⁺ and λ_{exc} =490 nm.

Figure S8: Expanded view of the 9+ charge state with annotated adduct species and the isotopic pattern of the ion $[M\bullet2Na\bulletEu+4H]^{9+}$ shown in the inset (A). Typical broadband nESI-FT-ICR MS spectrum of NCS1 in the presence of $Eu^{3+}(B)$. Deconvoluted spectrum showing the neutral species. The isotopic pattern shown in the inset confirms the theoretical isotopic average mass of the NCS1 protein 22.976 kDa (C).

Figure S9: Comparison of experimental isotopic distributions of NCS1:Tb (red) and NCS1:Eu (blue) adduct species obtained from nESI-FT-ICR MS with their theoretical isotope patterns (black). Note the good agreement between profiles indicated by the dashed lines.

Figure S10: ${}^{\text{TIMS}}_{\text{N2}}$ profiles for the charge state 9+ of NCS1 in the presence of Tb³⁺ (left) and Eu³⁺ (right) obtained from nESI-TIMS-TOF MS.