Supplementary Material for

Exploring the direction-dependent of conductive filaments formation and oxygen vacancy migration behaviors in HfO₂-based RRAM

Donglan Zhang,^a Jiong Wang,^{*a} Qing Wu,^b Yong Du^a

^aPowder Metallurgy Research Institute, Central South University, Changsha, Hunan, 410083, China

^bInformation and Network Center, Central South University, Changsha, Hunan, 410083, China *E-mail address: <u>wangjionga@csu.edu.cn</u>

Supplementary Note: Oxygen vacancy configurations for simulated conductive filaments formation

As observed experimentally^{1, 2}, the formation of oxygen vacancy conductive filaments (CFs) can be briefly described as follows: In the initial device, intrinsic vacancy defects in the materials are generated randomly, but can promote the formation of CFs. During the Forming process, more oxygen vacancies are gradually generated, which tend to form clusters and gradually accumulate from the cathode to the anode, eventually forming a CF that connects the two electrodes. The CFs are essentially a container for oxygen vacancies³, which are distributed in a relatively orderly manner to form a CF connecting the top and bottom electrodes during the resistive switching process.

In other words, although the intrinsic oxygen vacancies are generated randomly in the initial device, during the Forming process, more oxygen vacancies will be generated around the intrinsic oxygen vacancies, which tend to accumulate in clusters and grow gradually from the cathode to the anode, eventually forming a CF connecting the top and bottom electrodes. In this work we focus on exploring the direction dependence in the formation of oxygen vacancy CFs. Considering that both relatively ordered and relatively disordered states of oxygen vacancy distribution are possible states in real devices, 13 configurations of ordered and disordered distribution of oxygen vacancies along different directions were established to simulate the formation of CFs, as shown

in Fig. 3 and Fig. S1. We have considered both the continuous and discontinuous distribution of oxygen vacancies along specific directions ([010] and [001]), as well as distribution of oxygen vacancies not along the [001] and [010] directions, but between 3-fold oxygen vacancy (V_{O3}) and 4-fold oxygen vacancy (V_{O4}) in *m*-HfO₂ system, to more reasonably simulate the possible states of the oxygen vacancy CFs formation during the resistive switching process. Regarding the oxygen vacancy configurations between V_{O3} and V_{O4} , we have only considered the results of the partial charge density to reflect more visually the possible formation states of the CFs, as shown in Fig. S1.

Table S1 Wyckoff position of *m*-HfO₂

Atom	Wyckoff positions
Hf	4 <i>e</i> (0.276, 0.041, 0.208)
Ο	4e (0.073, 0.346, 0.332)
О	4 <i>e</i> (0.446, 0.748, 0.488)

Fig. S1 The configurations of continuous and discontinuous distribution of 3-fold oxygen vacancy (V_{O3}) and 4-fold oxygen vacancy (V_{O4}) in the 2×3×2 *m*-HfO₂ supercell, corresponding to (a) S5. (b) S6. (c) S7 and (d) S8, respectively. The partial charge density Fig. (e)-(h) corresponding to configurations S5, S6, S7 and S8,

respectively.

Fig. S2 The partial charge density of S (V_{O3} and V_{O4} discontinuous distribution at the (100) crystal plane in the *m*-HfO₂ supercell).

Fig. S3 The total density of states (TDOS) and partial density of states (PDOS) of perfect m-HfO₂ supercell without V₀.

Fig. S4 The band structures of perfect *m*-HfO₂ supercell without V₀.

Fig. S5 The electron localization function (ELF) of continuous and discontinuous distribution of V_{O3} and V_{O4} at the (100) crystal plane in the $2\times3\times2$ *m*-HfO₂ supercell. (a) S1-V_{O3}. (b) S2-V_{O3}. (c) S3-V_{O3}. (d) S4-V_{O3}. (e) S1-V_{O4}. (f) S2-V_{O4}. (g) S3-V_{O4}. (h) S4-V_{O4}. (i) S. (j) Perfect *m*-HfO₂ supercell without V_O.

Fig. S6 The vacancy formation energy of S1-V₀₃ and S3-V₀₄ in the $2\times3\times2$ *m*-HfO₂ supercell with charge states of 0, 1+ and 2+, respectively, as a function of Fermi level at different oxygen partial pressures and temperatures. Fig. (a)-(c), (d)-(f) and (g)-(i) shows vacancy formation energy in the same temperature (300, 900, and 1800 K) at different oxygen partial pressures, respectively.

References

- 1 C. Li, B. Gao, Y. Yao, X. Guan, X. Shen, Y. Wang, P. Huang, L. Liu, X. Liu, J. Li, C. Gu, J. Kang and R. Yu, *Adv. Mater.*, 2017, **29**, 1602976.
- 2 Y. Zhang, G. Q. Mao, X. Zhao, Y. Li, M. Zhang, Z. Wu, W. Wu, H. Sun, Y. Guo, L. Wang, X. Zhang, Q. Liu, H. Lv, K. H. Xue, G. Xu, X. Miao, S. Long and M. Liu, *Nat. Commun.*, 2021, 12, 7232.
- 3 U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak and W. Vandervorst, *Nano Lett.*, 2015, **15**, 7970-7975.