Supplementary Information

The fate of organic species upon sintering of thiol-stabilised gold nanoparticles under different atmospheric conditions

Paige K. Summers, Alexander Angeloski, Richard Wuhrer, Michael B. Cortie, Andrew M. McDonagh

Fig. S1. TEM images of (1) BT@AuNP and (2) HDT@AuNP

Fig. S2. ¹H NMR spectra of (a)/(c) BT@AuNP and (b)/(d) HDT@AuNP in CDCl₃. * indicates water (1.58 ppm).

Fig. S3. SEM images of BT@AuNPs (a) and HDT@AuNPs (c) deposited using chloroform before heating and (b/d) after heating 10 °C min-1 in air to 350 °C.

Fig. S4. TGA-MS data for BT@AuNP under a helium atmosphere.

Fig. S5. ¹H NMR spectra of 1-butanethiol spiked with dibutyl disulfide.

* denotes water (1.58 ppm).

Fig. S6. Heat flow peaks (exothermic) under sealed and open environments for BT@AuNP and HDT@AuNP.

Table S1. Kruskal-Wallis test data comparing T_{SE} values of HDT@AuNPs sintered under different gaseous environments argon, hydrogen and air (gases), and a comparison of the gas T_{SE} data compared with high vacuum sintering data (atmospheres).

X^2	df	р
0.651	3	0.885
2.34	1	0.126
	<u>X</u> ² 0.651 2.34	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S2. Kruskal-Wallis test data comparing T_{SE} values of BT@AuNPs sintered under different gaseous environments argon, hydrogen and air (gases), and a comparison of the gas T_{SE} data compared with high vacuum sintering data (atmospheres).

	X^2	df	р
Gases	3.14	3	0.371
Atmospheres	10	1	0.002