First-Principles Study of Square Chalcogen Bond Interactions

and its Adsorption Behavior on Silver Surface

Hui Wang^{a,*}, Bin Li^a, Xiaoting Wang^a, Fu Yin^a, Qiaoyu Wei^a, Xudong Wang^b, Yuxiang Ni^a, Hongyan Wang^a

^aSchool of Physical Science and Technology, Southwest Jiaotong University,

Chengdu 611756, PR China

^bSchool of Astronomy and Space Science, University of Science and Technology of China,

Hefei 230026, PR China

SUPPORTING INFORMATION

Fig S1. The symmetry-adapted perturbation theory (SAPT) calculations were carried out using PSI4 program, SAPT2+/aug-cc-PVDZ method is applied for energy decomposition calculations of dimer complexes, and SAPT2+/Def2-TZVPP method is applied for Te element. Energy units is in kcal/mol.

Table S1. Geometric parameters and the interaction energy E_{int} of dimers were calculated at MP2/aug-cc-pVTZ theory level. The %VDW denotes the ratio of d (Ch…N) to the sum of the VDW radii of two interacting atoms. d₁ and d₂ are the Ch…N chalcogen bond distance, respectively. The data in parentheses are the Ch…N distances of silver-surface supported dimer obtained using the PBE-D3 method.

Table S2. The optimized dimer structure using PBE-D3 method. %VDW is the ratio of d (Ch…N) to the sum of the VDW radii of the two interacting atoms. The data in parentheses are the Ch…N distances of silver-surface supported dimer obtained using the PBE-D3 method.

Table S3. The single point energy E_{int} (kcal/mol) of the dimer complex calculated at DLPNO-CCSD(T) theory level. %VDW denotes the ratio of d (Ch…N) to the sum of the VDW radii of the two interacting atoms. d_1 and d_2 are the Ch…N chalcogen bond distance, respectively. The data in parentheses are the Ch…N distances of silver-surface supported dimer obtained using the PBE-D3 method.

^{*} Corresponding author.

E-mail address: wanghui@swjtu.edu.cn (H. Wang)

Fig S1. The symmetry-adapted perturbation theory (SAPT) calculations were carried out using PSI4 program, SAPT2+/aug-cc-PVDZ method is applied for energy decomposition calculations of dimer complexes, and SAPT2+/Def2-TZVPP method is applied for Te element. Energy unit is in kcal/mol.

Table S1. Geometric parameters and the interaction energy E_{int} of dimers were calculated at MP2/aug-cc-pVTZ theory level. The %VDW denotes the ratio of d (Ch…N) to the sum of the VDW radii of two interacting atoms. d₁ and d₂ are the Ch…N chalcogen bond distance, respectively. The data in parentheses are the Ch…N distances of silver-surface supported dimer obtained using the PBE-D3 method.

Complexes	d_1	d ₂	%vdW	E _{int}
	(Å)	(Å)		(kcal/mol)
$(C_6N_2H_4S)_2$	2.969	2.969	0.919	-6.693
	(2.858)	(3.213)		
$(C_6N_2H_4Se)_2$	2.841	2.841	0.851	-7.548
	(2.720)	(2.753)		
$(C_6N_2H_3FS)_2$	2.970	2.971	0.920	-5.188
	(2.893)	(3.164)		
$(C_6N_2H_3FSe)_2$	2.843	2.846	0.852	-7.592
	(2.649)	(2.841)		

Table S2. The optimized dimer structure using PBE-D3 method. %VDW is the ratio of d (Ch…N) to the sum of the VDW radii of the two interacting atoms. The data in parentheses are the Ch…N distances of silver-surface supported dimer obtained using the PBE-D3 method.

Complexes	d_1	d ₂	0/1117	Eint
	(Å)	(Å)	%ovd w	(kcal/mol)
$(C_6N_2H_4S)_2$	3.206	3.200	0.002	-3.851
	(2.858)	(3.213)	0.992	
$(C_6N_2H_4Se)_2$	2.862	2.859	0 956	-7.818
	(2.720)	(2.753)	0.856	
$(C_6N_2H_4Te)_2$	2.563	2.562	0.704	-18.379
	(2.428)	(2.454)	0.704	
$(C_6N_2H_3FS)_2$	3.117	3.112	0.964	-3.989
	(2.893)	(3.164)		
$(C_6N_2H_3FSe)_2$	2.841	2.838	0.850	-8.071
	(2.649)	(2.841)		
$(C_6N_2H_3FTe)_2$	2.532	2.531	0.695	-19.071
	(2.370)	(2.453)		

Table S3. The single point energy E_{int} (kcal/mol) of the dimer complex calculated at DLPNO-CCSD(T) theory level. %VDW denotes the ratio of d (Ch…N) to the sum of the VDW radii of the two interacting atoms. d_1 and d_2 are the Ch…N chalcogen bond distance, respectively. The data in parentheses are the Ch…N distances of silver-surface supported dimer obtained using the PBE-D3 method.

Complexes	d ₁	d ₂	0/ A W/	E _{int}
	(Å)	(Å)	70VU W	(kcal/mol)
$(C_6N_2H_4S)_2$	3.077	3.077	0.953	-4.499
	(2.858)	(3.213)		
$(C_6N_2H_4Se)_2$	2.845	2.845	0.852	-7.141
	(2.720)	(2.753)		
$(C_6N_2H_4Te)_2$	2.564	2.564	0.704	-14.049
	(2.428)	(2.454)		
$(C_6N_2H_3FS)_2$	3.074	3.074	0.952	-4.621
	(2.893)	(3.164)		
$(C_6N_2H_3FSe)_2$	2.830	2.831	0.847	-7.379
	(2.649)	(2.841)		
$(C_6N_2H_3FTe)_2$	2.557	2.557	0.702	17.020
	(2.370)	(2.453)		-17.039