Supporting Information

Enhancing the osmotic energy conversion of a nanoporous membrane: influence of pore density, pH, and temperature

Ding-Cheng Zheng and Jyh-Ping Hsu*

Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan Tel: 886-2-23637448; e-mail: jphsu@ntu.edu.tw

Pore-pore distance a_1 (nm)	Pore density (pores/cm ²)
200	2.5×10 ⁹
320	9.8×10 ⁸
450	5.0×10^{8}
600	2.8×10^{8}
800	1.6×10^{8}
1000	1.0×10^{8}
2000	2.5×10^{7}
3200	1.0×10 ⁷
10000	1.0×10^{6}

Table S1. Dependence of pore density on pore-pore distance.

Fig. S1 Variation of diffusion current with pore density for a multi-pore system with $a_0=5 \mu m$ (infinite reservoir). Parameters used: L=1000 nm, d=10 nm, $\sigma_s=-0.06 \text{ C/m}^2$, $C_H/C_L=100 \text{ mM/1 mM}$, and T=298 K, n=4, and $H_{res}=2000 \text{ nm}$. The pore density is adjusted by the pore-pore distance a_1 (Table S1).

Fig. S2 (a) Schematic representation of a single-pore system, where a cylindrical nanopore connects two large, identical reservoirs with a_0 being half width. The boundary marked red has the surface charge density σ_s . (b) Variation of osmotic current with pore-pore distance; both the results for single-pore and those for multi-pore are presented. Temporal variation of osmotic current, (c), and Cl⁻ concentration, (d), after a ΔP =-1 bar is applied for the case of a_1 =200 nm. The parameters used in (b)-(d) are *L*=50 nm, *d*=10 nm, pH 8, $C_{\rm H}/C_{\rm L}$ =100 mM/1 mM, *T*=298 K, $H_{\rm res}$ =2000 nm, and a_0 = $a_1/2$.

Fig. S3 (a) Variation of averaged surface charge density of the wall $\bar{\sigma}_s$ with pH for different bulk concentrations. (b) Variation of $\bar{\sigma}_s$ with temperature for two pH levels. The parameters used in (b) are *L*=600 nm, *d*=10 nm, *C*_H/*C*_L=1000 mM/1 mM, *H*_{res}=2000 nm, and $a_0=a_1/2=100$ nm.

		1 01
Pore-pore distance	Pore density	Porosity (%)
a_1 (nm)	(pores/cm ²)	when d=10 nm
50	4.0×10^{10}	3.142
100	1.0×10^{10}	0.785
140	5.1×10 ⁹	0.401
200	2.5×10 ⁹	0.196

 Table S2. Dependence of pore density on pore-pore distance and the corresponding porosity.

Fig. S4 Variation of the net power P_{net} , (a) and (c), and overall power increment OPI and power increment PI, (b) and (d), with pore length. In (a) and (c), green dashed curve: power of PV work P_{PV} of ΔP =-0.5 bar; wine dash-dotted curve: power of PV work P_{PV} of ΔP =-1 bar. In (b) and (d), gray dashed curve: OPI=0. In (d), dash-dotted curve: ΔP =-0.5 bar; solid curve: ΔP =-1 bar. Parameters used are *d*=10 nm, $C_{\rm H}/C_{\rm L}$ =1000 mM/1 mM, *T*=323 K, pH 11, $H_{\rm res}$ =2000 nm, and a_0 = $a_1/2$. In (a) and (b), a_1 =100 nm. In (c) and (d), a_1 =50 nm.