Electronic Supplementary Information

Stepwise Hydrations of Anhydride Tuned by Hydrogen Bonds:

Rotational Study on Maleic Anhydride-(H₂O)₁₋₃

Jiayi Li, Xiujuan Wang, Xinyue Zhang, Junhua Chen, Hao Wang, Xiao Tian, Xuefang Xu, and Qian Gou*

Contents:

Figure S1. Plausible isomers of the MAH-H₂O complex and their relative zero-point energies inclusive of BSSE corrections optimized at the MP2/6-311++G(d,p) level within 6.5 kJ mol⁻¹. The isomers have been labeled 1w-I, II, etc., in order of increasing energy.

Figure S2. Plausible isomers of the MAH- $(H_2O)_2$ complex and their relative zero-point energies inclusive of BSSE corrections optimized at the MP2/6-311++G(d,p) level within 6.5 kJ mol⁻¹. The isomers have been labeled 2w-I, II, etc., in order of increasing energy.

Figure S3. Plausible isomers of the MAH- $(H_2O)_3$ complex and their relative zero-point energies inclusive of BSSE corrections optimized at the MP2/6-311++G(d,p) level within 6.5 kJ mol⁻¹. The isomers have been labeled 3w-I, II, etc., in order of increasing energy.

Figure S4. Results of the independent gradient model based on Hirshfeld partition (IGMH) analysis of plausible isomers of the MAH-(H₂O)₁₋₃ complexes.

Figure S5. Comparison of the hydrogen bonding structures in MAH- $(H_2O)_{1-3}$, formamide(FMA)- $(H_2O)_{1-3}$ and $(H_2O)_{3-3}$ ₅ calculated at the MP2/6-311++G(d,p) level.

Table S1. Spectroscopic parameters of plausible isomers of MAH-H₂O calculated at the MP2/6-311++G(d,p) level of theory within 6.5 kJ mol⁻¹.

Table S2. Spectroscopic parameters of plausible isomers of MAH- $(H_2O)_2$ calculated at the MP2/6-311++G(d,p) level of theory within 6.5 kJ mol⁻¹.

Table S3. Spectroscopic parameters of plausible isomers of MAH- $(H_2O)_3$ calculated at the MP2/6-311++G(d,p) level of theory within 6.5 kJ mol⁻¹.

Table S4. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isomer of MAH-H₂O.

Table S5. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isomer of MAH-(H₂O)₂.

Table S6. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isomer of MAH-(H₂O)₃.

Table S7. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O.

Table S8. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-DOH.

Table S9. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-HOD.

Table S10. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-DOD.

Table S11. Experimental transition frequencies (vobs/MHz) together with the corresponding observed – calculated

differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O8-H₂O.

Table S12. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O9-H₂O.

Table S13. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O8-H₂¹⁸O9.

Table S14. Experimental values of spectroscopic parameters of the minor isotopologues of MAH-H₂O.

Table S15. Experimental values of spectroscopic parameters of the minor isotopologues of MAH-(H₂O)₂.

Table S16. Comparison between r_s and r_e coordinates of the MAH-(H₂O)₁₋₂ complexes.

Table S17. Comparison between r_s and r_e structural parameters of the MAH-(H₂O)₁₋₂ complexes.

Table S18. MP2/6-311++G(d,p) geometry of the observed isomer of MAH-H₂O.

Table S19. MP2/6-311++G(d,p) geometry of the observed isomer of MAH- $(H_2O)_2$.

Table S20. MP2/6-311++G(d,p) geometry of the observed isomer of MAH-(H₂O)₃.

References

Figure S1. Plausible isomers of the MAH-H₂O complex and their relative zero-point energies inclusive of BSSE corrections ($\Delta E_{ZPE,BSSE}$, in unit of kJ mol⁻¹) optimized at the MP2/6-311++G(d,p) level^[1] within 6.5 kJ mol⁻¹. The isomers have been labeled 1w-I, II, etc., in order of increasing energy. The principal axes are also given. The absolute energy for the global minimum is *E*(1w-I)=-530.918239 *E*_h.

b

1w-IV, 5.6

Figure S2. Plausible isomers of the MAH-(H₂O)₂ complex and their relative zero-point energies inclusive of BSSE corrections ($\Delta E_{ZPE,BSSE}$, in unit of kJ mol⁻¹) optimized at the MP2/6-311++G(d,p) level within 6.5 kJ mol⁻¹. The isomers have been labeled 2w-I, II, etc., in order of increasing energy. The principal axes are also given. The absolute energy for the global minimum is $E(2w-I)=-607.288752 E_h$.

Figure S3. Plausible isomers of the MAH-(H₂O)₃ complex and their relative zero-point energies inclusive of BSSE corrections ($\Delta E_{ZPE,BSSE}$, in unit of kJ mol⁻¹) optimized at the MP2/6-311++G(d,p) level within 6.5 kJ mol⁻¹. The isomers have been labeled 3w-I, II, etc., in order of increasing energy. The principal axes are also given. The absolute energy for the global minimum is *E*(3w-I)=-683.579757 *E*_h.

Figure S4. Results of the independent gradient model based on Hirshfeld partition (IGMH)^[2] analysis of plausible isomers of the MAH-(H₂O)₁₋₃ complexes. The sign(λ_2) ρ (r) function mapped on the δg_{inter} isosurface for all interactions ($\delta g_{inter} = 0.005$ au and blue-red color scale $-0.05 < sign(\lambda_2)\rho$ (r) < 0.05) for the structures. Binding energies with BSSE corrections (B_{BSSE} , in unit of kJ mol⁻¹) of MAH-(H₂O)₁₋₃ calculated at at the MP2/6-311++G(d,p) level within 6.5 kJ mol⁻¹ are also given with the labeling shown in Figures S1-S3.

Figure S5. Comparison of the hydrogen bonding structures in MAH- $(H_2O)_{1-3}$, FMA- $(H_2O)_{1-3}$,^[3] and $(H_2O)_{3-5}$ ^[4] calculated at the MP2/6-311++G(d,p) level. The dotted lines connect the heavy atoms forming a hydrogen bond loop in each hydrate.

The highly structural similarity of MAH- $(H_2O)_{1-3}$ to FMA- $(H_2O)_{1-3}$ and $(H_2O)_{3-5}$ indicates that MAH can act as a replacement for a $(H_2O)_2$ moiety of a pure water cluster with little effect on the overall structure.

Parameters ^a	1w-l	1w-II	1w-III	1w-IV
A [MHz]	5328.4	2593.8	3398.6	2812.9
<i>B</i> [MHz]	1106.7	1822.1	1048.4	1608.5
C [MHz]	917.1	1533.6	803.1	1461.8
$ \mu_a , \mu_b , \mu_c $ [D]	2.1, 2.5, 0.7	0.0, 0.8, 3.3	5.4, 2.5, 0.5	0.9, 1.1, 2.9

Table S1. Spectroscopic parameters of plausible isomers of MAH-H₂O calculated at the MP2/6-311++G(d,p) level of theory within 6.5 kJ mol⁻¹. The isomers have been labeled 1w-I, II, etc., shown in Figure S1.

^a A, B and C are the asymmetric top determinable rotational constants. μ_a , μ_b and μ_c are the electric dipole moment components (in Debye).

Table S2. Spectroscopic parameters of plausible isomers of MAH- $(H_2O)_2$ calculated at the MP2/6-311++G(d,p) level of theory within 6.5 kJ mol⁻¹. The isomers have been labeled 2w-I, II, etc., shown in Figure S2.

Parameters ^a	2w-I	2w-II	2w-III
A [MHz]	2929.9	2925.5	2207.8
<i>B</i> [MHz]	713.8	713.9	970.8
C [MHz]	575.0	575.1	911.6
$ \mu_a , \mu_b , \mu_c $ [D]	2.6, 1.1, 0.3	2.9, 0.9, 1.8	0.3, 1.9,2.4

^a *A*, *B* and *C* are the asymmetric top determinable rotational constants. μ_o , μ_b and μ_c are the electric dipole moment components (in Debye).

Table S3. Spectroscopic parameters of plausible isomers of MAH- $(H_2O)_3$ calculated at the MP2/6-311++G(d,p) level of theory within 6.5 kJ mol⁻¹. The isomers have been labeled 3w-I, II, etc., shown in Figure S3.

Parameters ^a	3w-I	3w-II	3w-III	3w-IV
A [MHz]	1816.6	1344.9	1813.9	1720.8
<i>B</i> [MHz]	485.7	681.0	724.1	736.5
C [MHz]	387.9	456.6	625.3	625.9
$ \mu_{a} , \mu_{b} , \mu_{c} $ [D]	2.4, 1.3, 0.6	4.2, 0.1, 0.8	4.2, 1.1, 1.7	4.2, 0.4, 3.1

^a A, B and C are the asymmetric top determinable rotational constants. μ_a , μ_b and μ_c are the electric dipole moment components (in Debye).

Table S4. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isomer of MAH-H₂O.

Trans	itions			Trans	itions		V/MH7
J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ	J' K _a ' K _c '	J" K _a " K _c "	V _{obs} /IVIHZ	V _{diff} /IVIHZ
3 0 3	2 0 2	6026.0374	-0.0001	835	734	16219.6850	0.0000
3 1 3	2 1 2	5766.5067	0.0002	909	808	17526.6346	-0.0004
3 1 2	2 1 1	6325.7921	0.0000	919	8 1 8	17163.5609	-0.0008
3 2 2	2 2 1	6049.8921	0.0013	9 1 8	8 1 7	18787.6773	0.0015
3 2 1	2 2 0	6073.7353	0.0023	928	827	18042.3169	-0.0002
4 0 4	303	8007.1429	0.0000	927	826	18663.2179	0.0011
4 1 4	3 1 3	7681.9646	-0.0003	10 0 10	909	19358.9851	-0.0016
4 1 3	3 1 2	8427.1119	-0.0003	10 1 10	919	19037.9625	-0.0013
4 2 3	3 2 2	8061.8540	0.0005	1 1 1	0 0 0	6289.4469	0.0022
4 2 2	3 2 1	8121.1923	0.0007	2 1 2	1 0 1	8119.6052	0.0004
4 3 2	3 3 1	8078.1074	0.0020	2 2 1	1 1 0	17038.0546	-0.0013
4 3 1	3 3 0	8078.8235	0.0013	2 2 0	1 1 1	17230.4914	-0.0064
505	4 0 4	9965.4678	0.0002	2 2 0	2 1 1	12824.2946	0.0013
5 1 5	4 1 4	9592.0209	0.0001	2 2 1	2 1 2	13377.7350	0.0013
514	4 1 3	10521.8301	-0.0003	3 1 3	2 0 2	9858.8203	-0.0001
524	4 2 3	10069.8205	0.0002	3 2 1	2 1 2	19457.4397	0.0022
523	4 2 2	10187.4034	0.0007	3 2 2	2 1 1	18868.2109	-0.0022
533	4 3 2	10102.4012	0.0000	3 2 2	3 1 3	13661.1218	0.0038
532	4 3 1	10104.9070	0.0003	3 2 1	3 1 2	12572.2342	0.0000
542	4 4 1	10096.4092	0.0064	4 0 4	3 1 3	4174.3593	-0.0006
541	4 4 0	10096.4168	-0.0018	4 1 4	3 0 3	11514.7500	0.0022
606	505	11897.1120	0.0001	4 2 3	4 1 4	14041.0083	0.0018
616	515	11495.7452	0.0004	4 2 2	4 1 3	12266.3130	-0.0004
6 1 5	514	12607.8301	-0.0065	505	4 1 4	6457.8628	0.0002
6 2 5	524	12072.8038	-0.0002	515	4 0 4	13099.6244	-0.0012
624	523	12275.2440	-0.0004	524	5 1 5	14518.8069	0.0009
6 3 4	533	12129.2533	0.0011	523	5 1 4	11931.8849	-0.0008
6 3 3	532	12135.9160	0.0000	606	5 1 5	8762.9536	-0.0001
6 4 3	542	12119.9908	0.0044	616	505	14629.9035	0.0005
6 4 2	541	12120.0574	-0.0003	625	6 1 6	15095.8650	-0.0003
652	551	12114.6857	-0.0020	624	615	11599.2918	-0.0017
651	5 5 0	12114.6857	-0.0023	707	6 1 6	11067.4162	-0.0006
707	606	13800.2078	0.0000	7 1 7	606	16125.2541	0.0005
7 1 7	6 1 6	13392.4624	0.0000	808	7 1 7	13350.5001	-0.0001
7 1 6	6 1 5	14682.7152	-0.0003	8 1 8	707	17606.8219	0.0012
726	625	14069.8345	-0.0003	8 1 7	726	6166.4631	-0.0008
7 2 5	624	14385.5414	0.0008	909	8 1 8	15595.3596	-0.0007

7 3 5	634	14158.5767	-0.0003	919	808	19094.8361	-0.0004
7 3 4	633	14173.5070	-0.0004	918	827	8894.1692	0.0006
744	643	14145.8817	0.0002	10 010	919	17790.7851	-0.0002
7 4 3	642	14146.1188	-0.0003	11 011	10 1 10	19931.6718	0.0014
7 1 6	707	7521.0450	0.0005	11 1 10	11 011	12934.3409	-0.0011
8 0 8	707	15675.5459	0.0000	11 1 10	10 2 9	14457.7466	0.0017
8 1 8	7 1 7	15281.7749	-0.0001	533	624	9400.1958	0.0009
8 1 7	7 1 6	16743.7014	-0.0014	532	625	9812.7023	-0.0084
827	726	16059.9717	0.0005	4 3 2	523	11573.0421	0.0040
826	7 2 5	16516.4153	-0.0012	4 3 1	524	11780.6123	0.0041
8 3 6	7 3 5	16190.0180	-0.0015				

Table S5. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculateddifferences (v_{diff} /MHz) for the observed isomer of MAH-(H₂O)₂.

Transition	IS		/N 411-	Trans	itions		V/MH7
J' K _a ' K _c ' J''	<i>K</i> _a " <i>K</i> _c "	V _{obs} /IVIHZ	V _{diff} /IVIHZ	J' K _a ' K _c '	J" K _a " K _c "	V _{obs} /IVIHZ	V _{diff} /IVIHZ
4 0 4 3	03	5100.4966	-0.0006	928	827	11505.0418	-0.0007
4 1 4 3	1 3	4871.1526	-0.0009	927	8 2 6	12110.1753	0.0032
4 1 3 3	12	5433.3884	-0.0006	10 0 10	909	12151.2115	-0.0001
4 2 3 3	22	5160.3176	0.0016	10 1 10	919	12012.3035	0.0001
4 2 2 3	2 1	5225.2682	0.0010	11 011	10 0 10	13287.1497	-0.0002
4 3 2 3	31	5178.0201	0.0059	11 111	10 1 10	13181.1371	0.0002
4 3 1 3	30	5179.1708	0.0039	12 0 12	11 011	14423.9778	0.0006
5 0 5 4	04	6329.3253	-0.0008	12 1 12	11 111	14345.5436	-0.0001
5 1 5 4	1 4	6077.8446	-0.0007	13 013	12 0 12	15562.9653	0.0017
5 1 4 4	1 3	6778.0484	-0.0008	13 1 13	12 1 12	15506.3407	-0.0015
5 2 4 4	2 3	6442.1597	-0.0014	3 1 3	2 0 2	5713.4022	0.0009
5 2 3 4	22	6569.5970	0.0000	3 2 1	2 1 2	10895.9859	0.0014
5 3 3 4	32	6477.4144	0.0015	322	2 1 1	10440.6294	0.0016
5 3 2 4	31	6481.4342	-0.0011	3 3 1	2 2 0	15167.6590	0.0005
6065	05	7532.1632	-0.0011	3 3 0	221	15174.4330	0.0015
6 1 6 5	15	7278.1127	-0.0012	221	1 1 0	9290.1242	-0.0019
6 1 5 5	14	8112.5017	-0.0018	2 2 0	1 1 1	9437.5556	-0.0011
6 2 5 5	2 4	7718.5495	-0.0011	2 2 0	2 1 1	6573.1164	-0.0074
6245	23	7934.3514	-0.0016	321	3 1 2	6392.2808	-0.0004
6 3 4 5	33	7779.0989	-0.0016	322	3 1 3	7204.3778	0.0025
6335	32	7789.7674	-0.0012	4 1 4	3 0 3	6736.6844	0.0002
6 4 3 5	4 2	7770.3488	0.0035	4 2 3	4 1 4	7493.5363	-0.0013
6 4 2 5	4 1	7770.5120	-0.0007	4 2 2	4 1 3	6184.1597	0.0002
6 5 2 5	5 1	7764.4251	0.0002	4 3 2	3 2 1	16445.3573	-0.0036
6 5 1 5	50	7764.4327	0.0068	505	4 1 4	4693.1473	0.0080
7 0 7 6	06	8710.3142	-0.0003	5 1 5	4 0 4	7714.0329	0.0006
7 1 7 6	16	8471.5627	-0.0010	524	515	7857.8544	0.0009

7	1	6	6	1	5	9433.6577	0.0008	5	2	3	5	1	4	5975.7073	0.0000
7	2	6	6	2	5	8988.4527	-0.0011	6	0	6	5	1	5	6147.4573	-0.0009
7	2	5	6	2	4	9317.0370	-0.0007	6	1	6	5	0	5	8662.8200	0.0000
7	3	5	6	3	4	9082.6439	-0.0017	6	2	5	6	1	6	8298.2839	-0.0063
7	3	4	6	3	3	9106.4299	-0.0011	6	2	4	6	1	5	5797.5572	0.0005
7	4	4	6	4	3	9071.8735	-0.0014	7	0	7	6	1	6	7579.6582	-0.0006
7	4	3	6	4	2	9072.4309	-0.0008	7	1	7	6	0	6	9602.2175	-0.0018
7	5	3	6	5	2	9062.6319	0.0037	7	2	6	7	1	7	8815.1805	0.0000
7	5	2	6	5	1	9062.6319	-0.0019	7	2	5	7	1	6	5680.9350	-0.0026
8	0	8	7	0	7	9868.4756	-0.0020	8	0	8	7	1	7	8976.5754	0.0026
8	1	8	7	1	7	9658.1674	0.0005	8	1	8	7	0	7	10550.0691	-0.0025
8	1	7	7	1	6	10737.9495	0.0006	8	1	7	7	2	6	5826.5888	-0.0035
8	2	7	7	2	6	10250.9066	0.0008	9	0	9	8	1	8	10331.6862	0.0001
8	2	6	7	2	5	10711.6646	0.0009	9	1	9	8	0	8	11519.8218	0.0022
8	3	6	7	3	5	10387.2481	-0.0011	9	1	8	8	2	7	7597.1858	0.0001
8	3	5	7	3	4	10434.1445	-0.0013	10	0 2	10	9	1	9	11644.6745	0.0023
8	4	5	7	4	4	10376.2152	-0.0015	11	0 2	11	10	1	10	12919.5213	0.0025
8	4	4	7	4	3	10377.7398	-0.0017	11	1 1	11	10	0	10	13548.7635	-0.0045
9	0	9	8	0	8	11013.2815	0.0013	12	0 2	12	11	1	11	14162.3594	0.0003
9	1	9	8	1	8	10838.2260	0.0004	12	1 :	12	11	0	11	14607.1612	-0.0006
9	1	8	8	1	7	12021.5007	0.0016								

Table S6. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isomer of MAH-(H₂O)₃.

Tran	sitions			Transi	itions		(N 4) -
J' Ka' Kc'	J'' Ka'' Kc''	V _{obs} /IVIHz	v _{diff} /WHz	J' K _a ' K _c '	J'' Ka'' Kc''	V _{obs} /IVIHZ	v _{diff} /WHz
505	4 0 4	4269.2796	-0.0094	14 0 14	13 013	11248.4457	0.0021
5 1 5	4 1 4	4103.4108	-0.0014	14 1 14	13 113	11229.7793	-0.0008
5 1 4	4 1 3	4589.2501	-0.0025	3 3 1	2 2 0	9528.2441	0.0006
606	505	5075.1346	-0.0007	4 4 1	3 3 0	13178.3536	-0.0002
616	5 1 5	4912.2658	-0.0024	515	4 0 4	5058.1557	-0.0011
6 1 5	514	5489.9725	0.0020	606	5 1 5	4286.2660	-0.0015
707	606	5863.8245	0.0040	616	5 0 5	5701.1363	0.0002
7 1 7	616	5716.0140	-0.0008	707	6 1 6	5237.8216	0.0018
7 1 6	6 1 5	6379.7984	-0.0006	7 1 7	606	6342.0189	0.0033
808	707	6639.8854	0.0025	808	7 1 7	6161.6905	0.0026
8 1 8	7 1 7	6514.7478	0.0000	8 1 8	707	6992.9453	0.0025
909	808	7408.6748	0.0019	909	8 1 8	7055.6183	0.0052
919	8 1 8	7308.8171	0.0004	919	8 0 8	7661.8734	-0.0030
10 0 10	909	8174.6767	-0.0015	10 0 10	919	7921.4774	0.0027
10 1 10	9 1 9	8098.7539	0.0006	10 1 10	9 0 9	8351.9533	-0.0035
11 011	10 0 10	8940.7503	-0.0012	11 0 11	10 1 10	8763.4716	-0.0014

11 1 11	10 1 10	8885.1880	-0.0004	11 1 11	10 010	9062.4667	-0.0002
12 0 12	11 0 11	9708.2393	-0.0032	12 0 12	11 111	9586.5245	-0.0027
12 1 12	11 1 11	9668.7764	0.0016	12 1 12	11 011	9790.4915	0.0013
13 0 13	12 0 12	10477.5162	-0.0006	13 013	12 1 12	10395.2642	-0.0050
13 1 13	12 1 12	10450.1256	-0.0007	13 1 13	12 0 12	10532.3804	0.0065

Table S7. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O.

Trans	sitions		/h 41	Trans	sitions		/h 41
J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ	J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ
3 0 3	2 0 2	5746.7855	-0.0014	7 1 7	616	12798.3015	-0.0004
3 1 3	2 1 2	5507.6622	-0.0009	716	6 1 5	13981.3587	0.0050
3 1 2	2 1 1	6019.5176	-0.0013	1 1 1	0 0 0	6215.2272	0.0015
4 0 4	3 0 3	7639.3044	-0.0009	2 1 2	1 0 1	7966.8150	0.0011
4 1 4	3 1 3	7337.9217	-0.0019	2 2 1	1 1 0	16893.9720	0.0013
4 1 3	3 1 2	8019.9632	-0.0005	220	1 1 1	17069.6114	0.0021
4 2 3	3 2 2	7685.0539	-0.0002	3 1 3	2 0 2	9634.9856	0.0007
4 2 2	321	7734.6649	-0.0004	321	2 1 2	19182.4092	-0.0060
505	4 0 4	9512.6407	-0.0013	322	2 1 1	18645.5560	-0.0001
5 1 5	4 1 4	9163.6260	-0.0017	4 1 4	3 0 3	11226.1227	0.0010
514	4 1 3	10014.9372	0.0016	505	4 1 4	5925.8229	-0.0028
524	4 2 3	9600.0479	-0.0022	515	4 0 4	12750.4466	0.0025
523	4 2 2	9698.5073	0.0005	606	5 1 5	8125.4707	-0.0001
606	505	11363.2706	-0.0022	616	505	14221.7622	0.0003
6 1 6	5 1 5	10983.9580	-0.0018	707	6 1 6	10330.6689	0.0024
6 1 5	5 1 4	12002.7183	0.0020	7 1 7	606	15656.7911	0.0002
7 0 7	606	13189.1562	0.0008				

Table S8. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-DOH.

Trans	itions			Trans	itions		
J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ	J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ
3 0 3	2 0 2	5919.4985	-0.0011	7 1 7	616	12798.3015	0.0041
3 1 3	2 1 2	5668.4697	-0.0025	7 1 6	6 1 5	13981.3587	0.0020
3 1 2	2 1 1	6207.7519	0.0000	1 1 1	0 0 0	6215.2272	-0.0064
4 0 4	3 0 3	7867.1245	-0.0037	2 1 2	1 0 1	7966.8150	-0.0072
4 1 4	3 1 3	7551.7420	-0.0006	2 2 1	1 1 0	16893.9720	0.0048
4 1 3	3 1 2	8270.2744	-0.0033	220	1 1 1	17069.6114	0.0060
4 2 3	3 2 2	7917.7800	0.0011	3 1 3	2 0 2	9634.9856	-0.0077
4 2 2	3 2 1	7972.7125	0.0024	321	2 1 2	19182.4092	-0.0048
5 0 5	4 0 4	9793.5949	-0.0026	322	2 1 1	18645.5560	0.0033
5 1 5	4 1 4	9429.9931	0.0014	4 1 4	3 0 3	11226.1227	-0.0061

5 1 4	4 1 3	10326.7133	-0.0029	505	4 1 4	5925.8229	0.0004
524	4 2 3	9890.2822	-0.0020	515	4 0 4	12750.4466	-0.0022
523	4 2 2	9999.2132	0.0013	606	515	8125.4707	0.0013
606	5 0 5	11695.1586	-0.0017	616	505	14221.7622	0.0005
6 1 6	5 1 5	11302.3419	0.0023	707	616	10330.6689	0.0016
6 1 5	5 1 4	12375.1371	-0.0005	7 1 7	606	15656.7911	0.0043
707	606	13569.8418	0.0023				

Table S9. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated

Trans	sitions			Trans	itions		
J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ	J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ
3 0 3	2 0 2	5808.6479	-0.0054	7 1 7	6 1 6	12932.0932	0.0043
3 1 3	2 1 2	5565.6832	-0.0100	716	6 1 5	14135.0429	0.0097
3 1 2	2 1 1	6086.2904	-0.0105	1 1 1	0 0 0	6244.4451	0.0041
4 0 4	3 0 3	7721.0548	-0.0040	2 1 2	1 0 1	8013.9462	0.0003
4 1 4	3 1 3	7415.1136	-0.0062	2 2 1	1 1 0	16963.7028	0.0030
4 1 3	3 1 2	8108.8028	-0.0060	220	1 1 1	17142.4198	0.0022
4 2 3	3 2 2	7768.2765	0.0053	3 1 3	2 0 2	9698.6357	-0.0008
4 2 2	3 2 1	7819.4725	0.0017	321	2 1 2	19279.6135	-0.0041
5 0 5	4 0 4	9613.6884	-0.0011	322	2 1 1	18733.2002	-0.0017
5 1 5	4 1 4	9259.8484	-0.0020	4 1 4	3 0 3	11305.1016	-0.0013
5 1 4	4 1 3	10125.6614	0.0000	505	4 1 4	6029.6404	-0.0049
524	4 2 3	9703.8617	-0.0092	515	4 0 4	12843.8940	-0.0006
523	4 2 2	9805.4484	-0.0084	606	5 1 5	8252.7448	0.0005
606	505	11482.9514	0.0019	616	505	14329.2558	0.0008
6 1 6	5 1 5	11099.0509	0.0010	707	6 1 6	10480.5085	0.0075
6 1 5	5 1 4	12135.0822	0.0043	7 1 7	606	15778.3956	0.0011
7 0 7	606	13326.8131	0.0065				

differences (v_{diff} /MHz) for the observed isotopologue of MAH-HOD.

Table S10. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated

differences (v_{diff} /MHz) for the observed isotopologue of MAH-DOD.

Trans	itions			Transitions		V. /MH7	Vdiff/MHz
J' K _a ' K _c '	J'' Ka'' Kc''	V _{obs} /IVIHZ	V _{diff} /IVIHZ	J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ
3 0 3	2 0 2	5711.7705	-0.0086	7 1 7	616	12727.3062	0.0104
3 1 3	2 1 2	5476.3665	-0.0062	716	6 1 5	13890.5545	0.0053
3 1 2	2 1 1	5979.4429	-0.0009	1 1 1	0 0 0	6233.1410	-0.0014
4 0 4	3 0 3	7593.5409	-0.0060	2 1 2	1 0 1	7975.7191	-0.0055
4 1 4	3 1 3	7296.4187	-0.0055	2 2 1	1 1 0	16956.7340	0.0070
4 1 3	3 1 2	7966.7750	-0.0031	2 2 0	1 1 1	17129.2360	0.0013
4 2 3	3 2 2	7637.4670	0.0011	3 1 3	2 0 2	11220.9182	-0.0035

4 2 2	3 2 1	7685.0953	0.0040	3 2 1	2 1 2	5829.5010	0.0055
505	4 0 4	9456.8681	-0.0022	322	2 1 1	12739.4626	-0.0046
5 1 5	4 1 4	9112.0920	-0.0003	4 1 4	303	8015.7141	0.0042
514	4 1 3	9948.8596	-0.0098	505	4 1 4	14205.1861	0.0043
524	4 2 3	9540.8043	-0.0113	515	4 0 4	10208.9146	0.0053
523	4 2 2	9635.3540	-0.0102	606	515	15634.1698	-0.0009
606	505	11298.3077	0.0009	616	505	17129.2360	0.0013
616	5 1 5	10922.5893	0.0044	707	616	11220.9182	-0.0035
615	514	11924.0757	-0.0034	7 1 7	606	5829.5010	0.0055
707	606	13115.7926	0.0083				

Table S11. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O8-H₂O. (see Figure S2 for atom labeling)

Trans	sitions	(5.4)		Transitions		(5.4.1	
J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /MHZ	V _{diff} /KHZ	J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHz	V _{diff} /KHZ
505	4 0 4	6142.3249	-0.0037	716	6 1 5	9140.6650	-0.0005
5 1 5	4 1 4	5899.3360	-0.0013	808	707	9588.2762	-0.0041
514	4 1 3	6564.7867	-0.0011	8 1 8	7 1 7	9378.0325	-0.0013
524	4 2 3	6244.9419	-0.0007	909	8 0 8	10702.6496	0.0012
523	4 2 2	6360.7993	0.0004	919	8 1 8	10525.1121	-0.0007
606	505	7312.9774	-0.0024	10 0 10	909	11809.4933	-0.0019
6 1 6	5 1 5	7065.2219	-0.0004	10 1 10	919	11666.5216	0.0019
6 1 5	514	7858.6908	0.0018	11 011	10 0 10	12913.6306	0.0032
6 2 5	524	7483.0089	0.0011	11 1 11	10 1 10	12802.8976	0.0027
624	523	7679.7255	0.0022	3 1 3	2 0 2	5604.5175	-0.0001
707	606	8460.3407	-0.0006	4 1 4	3 0 3	6600.9146	0.0001
7 1 7	6 1 6	8224.8119	-0.0004	5 1 5	4 0 4	7552.6232	0.0005

Table S12. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O9-H₂O. (see Figure S2 for atom labeling)

Trans	itions	(5.4)		Trans	itions	(5.41)	(5.41)
J' K _a ' K _c '	J" K _a " K _c "	v _{obs} /MHz	v _{diff} ∕MHz	J' K _a ' K _c '	J'' Ka'' Kc''	v _{obs} /MHz	v _{diff} /MHz
505	4 0 4	6166.4022	0.0001	716	615	9197.0803	0.0072
5 1 5	4 1 4	5920.9673	-0.0045	808	707	9609.5482	-0.0021
5 1 4	4 1 3	6609.3045	0.0000	8 1 8	7 1 7	9407.3218	-0.0032
524	4 2 3	6279.3877	-0.0064	909	808	10723.4760	0.0020
523	4 2 2	6407.0218	-0.0043	919	8 1 8	10556.1901	-0.0005
606	505	7336.8070	-0.0019	10 010	909	11831.0772	0.0000
6 1 6	5 1 5	7089.8710	-0.0045	10 1 10	919	11699.1780	0.0027
6 1 5	514	7909.8938	0.0034	11 011	10 0 10	12937.0691	0.0043
6 2 5	524	7523.1941	-0.0043	11 111	10 1 10	12837.0350	0.0062
624	523	7739.0774	0.0001	3 1 3	2 0 2	5541.7590	0.0030

707	606	8482.8948	-0.0003	4 1 4	3 0 3	6537.2501	-0.0005
7 1 7	616	8251.9907	-0.0043	5 1 5	4 0 4	7488.0500	-0.0039

Trans	sitions	/NALL-			itions		V /MH-
J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ	J' K _a ' K _c '	J'' K _a '' K _c ''	V _{obs} /IVIHZ	V _{diff} /IVIHZ
505	4 0 4	5993.0343	-0.0031	716	615	8926.6273	0.0053
5 1 5	4 1 4	5755.2775	-0.0051	808	707	9348.7806	-0.0011
5 1 4	4 1 3	6412.6001	-0.0006	8 1 8	7 1 7	9147.0398	-0.0030
524	4 2 3	6097.0163	-0.0033	909	808	10434.1081	-0.0010
523	4 2 2	6214.4399	-0.0021	919	8 1 8	10265.1612	0.0002
606	505	7133.3426	-0.0029	10 010	909	11512.5756	0.0028
6 1 6	5 1 5	6892.2045	-0.0047	10 1 10	919	11377.6704	0.0027
6 1 5	514	7675.7057	0.0024	11 011	10 010	12588.8349	0.0058
625	524	7305.3349	-0.0023	11 111	10 1 10	12485.2339	0.0046
624	523	7504.4114	0.0015	3 1 3	2 0 2	5434.5833	0.0017
7 0 7	606	8250.5383	-0.0018	4 1 4	3 0 3	6404.8225	0.0001
7 1 7	6 1 6	8022.8062	-0.0052	515	4 0 4	7331.5040	-0.0028

Table S13. Experimental transition frequencies (v_{obs} /MHz) together with the corresponding observed – calculated differences (v_{diff} /MHz) for the observed isotopologue of MAH-H₂¹⁸O8-H₂¹⁸O9. (see Figure S2 for atom labeling)

Parameters ^a	MAH-H ₂ ¹⁸ O	MAH-D12OH	MAH-HOD11	MAH-DOD
A [MHz]	5339.4398(8) ^b	5377.3038(6)	5359.6967(8)	5361.859(1)
<i>B</i> [MHz]	1046.4474(2)	1080.1635(1)	1058.3245(2)	1039.0143(2)
<i>C</i> [MHz]	875.7954(1)	900.3652(1)	884.7538(1)	871.2924(1)
D _J [kHz]	[-0.2022] ^c	[-0.2022]	[-0.2022]	[-0.2022]
D _{JK} [kHz]	[0.411]	[0.411]	[0.411]	[0.411]
D _K [kHz]	[-9.80]	[-9.80]	[-9.80]	[-9.80]
<i>d</i> ₁ [kHz]	[-0.0418]	[-0.0418]	[-0.0418]	[-0.0418]
<i>d</i> ₂ [kHz]	[-0.0037]	[-0.0037]	[-0.0037]	[-0.0037]
N _{line}	33	33	33	33
P _{cc} [uŲ]	0.273(1)	0.275(9)	0.305(6)	0.311(5)
σ [kHz]	2.8	3.5	5.1	5.8

Table S14. Experimental values of spectroscopic parameters of the minor isotopologues of MAH-H₂O. (see Figure S1 for atom labeling)

^a *A*, *B* and *C* are the asymmetric top determinable rotational constants. D_{J} , D_{JK} , D_{K} , d_{1} , d_{2} are centrifugal distortion constants. N_{line} is the number of lines observed. P_{cc} is the planar moments calculated from rotational constants through $P_{cc} = h/(16\pi^{2})$ (-1/*C* + 1/*A* + 1/*B*). σ is the rms deviation of the fit. ^b Standard errors are given in parenthesis in units of the last digit. ^c Values in square brackets fixed to the parent species values. The P_{cc} value of parent species is 0.272(5) uÅ².

Table S15. Experimental values of spectroscopic parameters of the minor isotopologues of MAH- $(H_2O)_2$. (see Figure S2 for atom labeling)

Parameters ^a	MAH-H ₂ ¹⁸ O8-H ₂ O	MAH-H ₂ ¹⁸ O9-H ₂ O	MAH-H2 ¹⁸ O8-H2 ¹⁸ O9
A [MHz]	2874.461(3) ^b	2807.627(3)	2773.559(3)
B [MHz]	692.7219(3)	698.6590(3)	677.1513(3)
C [MHz]	558.9306(1)	560.1649(1)	544.9566(1)
D _J [kHz]	[0.083] ^c	[0.083]	[0.083]
D _{JK} [kHz]	[0.627]	[0.627]	[0.627]
D _K [kHz]	[5.23]	[5.23]	[5.23]
<i>d</i> ₁ [kHz]	[-0.0245]	[-0.0245]	[-0.0245]
<i>d</i> ₂ [kHz]	[-0.0059]	[-0.0059]	[-0.0059]
N _{line}	24	24	24
P _{cc} [uŲ]	0.591(6)	0.580(5)	0.584(7)
σ [kHz]	1.8	3.6	3.2

^a A, B and C are the asymmetric top determinable rotational constants. D_{J} , D_{JK} , D_{K} , d_{1} , d_{2} are centrifugal distortion constants. N_{line} is the number of lines observed. P_{cc} is the planar moments calculated from rotational constants through $P_{cc} = h/(16\pi^{2})$ (-1/C + 1/A + 1/B). σ is the rms deviation of the fit. ^b Standard errors are given in parenthesis in units of the last digit. ^c Values in square brackets fixed to the parent species values. The P_{cc} value of parent species is 0.587(2) uÅ².

species		a /Å		<i>b</i> /Å		<i>c</i> /Å	
		<i>r</i> e ^a	rs	r _e	r _s	r _e	rs
MAH-H ₂ O	08	-3.486	-3.4988(4) ^b	0.587	0.577(3)	-0.067	-0.02(9)
	H11	-4.385	-4.3288(4)	0.489	0.486(3)	0.254	0.186(8)
MAH-(H ₂ O) ₂	08	-3.457	-3.4672(4) ^b	-0.956	-0.988(2)	0.014	0.05(3)
	09	-2.919	-2.9713(5)	1.755	1.7776(8)	-0.035	[0] ^c

Table S16. Comparison between r_s and r_e coordinates of the MAH-(H₂O)₁₋₂ complexes. (see Figures S1-S2 for atom labeling)

^a The r_e coordinates were calculated at MP2/6-311++G(d,p) level of theory. ^b Errors in parentheses are 1 σ uncertainties expressed in units of the last digit. ^c Slightly imaginary value: fixed at zero.

Table S17. Comparison between r_s and r_e structural parameters of the MAH-(H₂O)₁₋₂ complexes. (see Figures S1-S2 for atom labeling)

species	parameters	r _e ^a	r _s
MAH-H ₂ O	r _{08н11} /Å	0.959	0.86(2) ^b
MAH-(H ₂ O) ₂	r ₀₈₀₉ /Å	2.796	2.809(2) ^b

^a The r_e structural parameter was calculated at MP2/6-311++G(d,p) level of theory. ^b Errors in parentheses are 1 σ uncertainties expressed in units of the last digit.

Bond lengths (Å)		Valence an	gles (°)	Dihedral angl	Dihedral angles (°)	
01C5	1.40					
C5C4	1.48	01C5C4	107.7			
C4C3	1.34	C5C4C3	108.2	01C5C4C3	0.0	
C3C2	1.49	C4C3C2	107.4	C5C4C3C2	-0.0	
C507	1.20	C4C5O7	130.0	07C5C4C3	-179.9	
C2O6	1.20	C3C2O6	129.2	C4C3C2O6	178.0	
0608	2.93	C2O6O8	98.0	C3C2O6O8	3.4	
C3H10	1.08	C4C3H10	131.0	C5C4C3H10	-178.0	
C4H9	1.08	C5C4H9	122.1	O7C5C4H9	0.1	
O8H11	0.96	O6O8H11	128.5	C2O6O8H11	-153.6	
O8H12	0.96	O6O8H12	25.7	C2O6O8H12	-177.4	

Table S18. MP2/6-311++G(d,p) geometry of the observed isomer of MAH-H $_2$ O.

Bond lengths (Å)		Valence angles (°)		Dihedral angles (°)	
01C2	1.38				
C2C3	1.49	01C2C3	108.9		
C3C4	1.34	C2C3C4	107.1	01C2C3C4	0.2
C4C5	1.49	C3C4C5	108.4	C2C3C4C5	-0.2
C2O6	1.20	C3C2O6	129.4	C4C3C2O6	-179.7
C507	1.20	C4C5O7	130.4	C3C4C5O7	-179.9
0608	2.90	C2O6O8	124.0	C3C2O6O8	1.2
0809	2.80	060809	90.1	C2O6O8O9	0.0
C4H10	1.08	C3C4H10	129.4	C2O3C4H10	179.9
C3H11	1.09	C2C3H11	122.6	C6C2C3H11	0.1
O8H12	0.96	O6O8H12	110.9	C2O6O8H12	135.2
O8H13	0.97	O6O8H13	9.7	C2O6O8H13	-174.2
O9H14	0.96	O8O9H14	112.4	O6O8O9H14	-140.8
O8H15	0.97	O8O9H15	11.4	O6O8O9H15	172.9

Table S19. MP2/6-311++G(d,p) geometry of the observed isomer of MAH-(H_2O)₂.

Bond lengths (Å)		Valence angles (°)		Dihedral angles (°)	
01C2	1.38				
C2C3	1.49	01C2C3	109.0		
C3C4	1.34	C2C3C4	107.0	01C2C3C4	0.3
C4C5	1.49	C3C4C5	108.5	C2C3C4C5	-0.2
C2O6	1.20	C3C2O6	129.4	C4C3C2O6	-179.8
C507	1.20	C4C5O7	130.5	C3C4C5O7	-179.8
0608	2.89	C2O6O8	139.4	C3C2O6O8	20.2
0809	2.77	060809	110.3	C2O6O8O9	-15.1
09010	2.77	0809010	103.0	060809010	-8.1
C4H11	1.08	C3C4H11	129.3	C2C3C4H11	178.0
C3012	1.09	C2C3H12	123.4	O6C2C3H12	0.6
O10H13	0.97	O9O10H13	4.6	O8O9O10H13	169.4
O10H14	0.96	O9O10H14	106.0	O8O9O10H14	-127.8
O9H15	0.95	O8O9H15	106.3	O6O8O9H15	124.1
O9H16	0.97	O8O9H16	5.0	O6O8O9H16	-166.1
O8H17	0.97	O6O8H17	1.2	C2O6O8H17	159.2
O8H18	0.96	O6O8H18	105.2	C2O6O8H18	-154.7

Table S20. MP2/6-311++G(d,p) geometry of the observed isomer of MAH-(H₂O)₃.

References

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
T. Lu, Q. Chen. J. Comput. Chem., 2022, 43, 539-555.

[3] S. Blanco, J. C. López, A. Lesarri, J. L. Alonso. J. Am. Chem. Soc., 2006, 128 (37), 12111-12121; S. Blanco, P.
Pinacho, J. C. López. J. Phys. Chem. Lett., 2017, 8 (24), 6060-6066.

[4] F. N. Keutsch, J. D. Cruzan, R. J. Saykally, *Chem. Rev.*, 2003, **103**, 2533–2577; J. D. Cruzan, L. B. Braly, K. Liu, M. G. Brown, J. G. Loeser, R. J. Saykally. *Science*, 1996, **271**, 59–62; K. Liu, M. G. Brown, J. D. Cruzan, R. J. Saykally. *Science*, 1996, **271**, 62–64.