Supplementary Information for "Elucidating the Interplay of Local and Mesoscale Ion Dynamics and Transport Properties in Aprotic Ionic Liquids"

Tyler Cosby,^{*,†} Christopher D. Stachurski,[‡] Robert A. Mantz,[¶] Paul C. Trulove,[‡] and David P. Durkin^{*,‡}

†Division of Mathematics and Sciences, University of Tennessee Southern, Pulaski, TN, USA.

[‡]Department of Chemistry, US Naval Academy, Annapolis, MD, USA. ¶Army Research Office, Durham, NC, USA.

E-mail: jcosby3@utsouthern.edu; durkin@usna.edu

Purity of Starting Materials

The purity of the synthesized 1-methyl-3-octylimidazolium chloride was ascertained by proton and carbon NMR measured on a Jeol ECX 400 MHz NMR spectrometer. The purity was estimated at \geq 99.9%. The NMR spectra are provided in Figures 1 and 2. The C₈MIm Cl was further used in the preparation of the C₈MIm AlCl₄ and Al₂Cl₇ ILs. On the basis of the purity of the C₈MIm Cl their purities were estimated at \geq 99%. The other ionic liquids were purchased from Iolitec and used as received without further verification of purity. Pu-

rities given in Experimental Methods are reproduced from the product information sheets provided by Iolitec.

Figure 1: ¹H NMR spectrum of C_8MIm Cl in deuterated acetonitrile.

Figure 2: $^{13}\mathrm{C}$ NMR spectrum of $\mathrm{C}_8\mathrm{MIm}$ Cl in deuterated acetonitrile.

Broadband Dielectric Spectroscopy

The three formalisms in which the dielectric data are presented, $\sigma^*(\omega)$, $M^*(\omega)$, and $\varepsilon^*(\omega)$, are each interrelated.¹ The complex electric modulus is defined as the inverse of complex dielectric permittivity, $M^*(\omega) = \frac{1}{\varepsilon^*(\omega)}$. The imaginary part of complex electric modulus is then given as $M''(\omega) = \frac{\varepsilon''(\omega)}{(\varepsilon'(\omega))^2 + (\varepsilon''(\omega))^2}$. The complex conductivity is related to complex dielectric permittivity as $\sigma^*(\omega) = i\omega\varepsilon_0\varepsilon^*(\omega)$, where ε_0 is the permittivity of free space. The real part of complex conductivity is then directly related to the imaginary part of complex dielectric permittivity as $\sigma'(\omega) = \omega\varepsilon_0\varepsilon''(\omega)$.

The broadband dielectric spectra of the 1-methyl-3-octylimidazolium ionic liquids are presented in Supplementary Figures 6, 7, 8, 9, 10, 11, 12, 13, 14.

Relaxation Rates

The temperature dependent relaxation rates were fit using the Vogel-Fulcher-Tammann equation, $\omega_i = \omega_{\infty} e^{\frac{-DT_0}{T-T_0}}$. The fit parameters are given in Tables 3, 4, 5, 6.

Density

The mass densities measured using an Anton-Paar SVM-3000 Stabinger viscometer, are presented in Supplementary Figure 3.

Figure 3: Temperature dependent mass densities of 1-methyl-3-octylimidazolium ionic liquids with the indicated anions. Lines correspond to linear fits, $\rho = mT + b$. Fit parameters are provided in Table 1.

IL	m	b
$C_8MIm Cl$	-5.555×10^{-4}	1.1732
$C_4MIm Br$	-6.439×10^{-4}	1.3601
$C_6MIm BF_4$	-6.567×10^{-4}	1.2980
$C_8MIm \ PF_6$	-7.434×10^{-4}	1.4577
$C_6MIm TCM$	-6.259×10^{-4}	1.1872
C_8MIm triflate	-7.342×10^{-4}	1.3999
$C_8MIm AlCl_4$	-	-
$C_8MIm TFSI$	-8.650×10^{-4}	1.5765
$C_8MIm Al_2Cl_7$	-	-

Table 1: Linear fit parameters of temperature dependent mass density.

_ _

Differential Scanning Calorimetry

Figure 4: Measured heat flow on cooling of the indicated ILs. Each IL has a glass transition temperature (evidenced by the step decrease in heat flow) and no evidence of crystallization. Cooling rate = $10 \,^{\circ}\text{C}\,\text{min}^{-1}$. The sharp peak below the T_g in the C₈MIm Cl curve is an experimental artifact.

Figure 5: Measured heat flow on cooling of $C_8MIm PF_6$. This IL undergoes crystallization at 223 K. Cooling/heating rate = $10 \,^{\circ}C \min^{-1}$

High-Frequency Shear Modulus

The values of high-frequency limiting, glassy shear modulus, G_{∞} , used in Maxwell's relation to calculate the structural relaxation rate, $\omega_{\eta} = G_{\infty}/\eta_0$, are presented in Table 2.

Table 2: High-frequency limiting, glassy shear moduli, G_{∞} , of the investigated ILs.

IL	G_{∞} [GPa]
$C_8MIm Cl$	0.4
$C_4MIm Br$	0.6
$C_6MIm BF_4$	0.7
$C_8MIm \ PF_6$	0.6
$C_6MIm TCM$	0.6
C_8MIm triflate	0.4
$C_8MIm AlCl_4$	0.6
$C_8MIm TFSI$	0.5
$C_8MIm Al_2Cl_7$	0.5

Figure 6: Frequency, ω , and temperature-dependent dielectric spectra of 1-octyl-3methylimidazolium chloride (C₈MIm Cl). (Top) Real part of complex conductivity, $\sigma'(\omega)$. Lines represent fits by the RBM. Arrows correspond to the ion-hopping rates, ω_{RBM} . (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. Lines represent fits by a single Havriliak-Negami (HN) function. The arrows correspond to the peak maximum, $\omega_{M''}$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, $\varepsilon''_{\text{der}}$. Solid lines represent the total fit obtained by a combination of up to two HN functions. The separate component fit functions are presented as dashed and dotted lines. The shaded areas depict the contribution of the primary, α dielectric relaxation. The arrows correspond to the α -relaxation rate, ω_{α} .

Figure 7: Dielectric spectra of 1-octyl-3-methylimidazolium bromide (C₈MIm Br). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε''_{der} . Lines have the same meaning as in Figure 6.

IL	$\omega_{\infty} \text{ [rad s}^{-1} \text{]}$	D	T_0 [K]
$C_8MIm Cl$	8.94×10^{12}	9.2	177.9
$C_8MIm Br$	1.11×10^{13}	11.3	155
$C_8MIm BF_4$	1.41×10^{12}	8.1	150.7
$C_8MIm \ PF_6$	2.04×10^{12}	8.8	154.2
$C_8MIm TCM$	1.11×10^{12}	5.5	161.7
C_8MIm triflate	-	-	-
$C_8MIm AlCl_4$	$4.08 imes 10^{11}$	5.8	151.6
$C_8MIm TFSI$	$5.59 imes 10^{11}$	6.6	151.6
$C_8MIm Al_2Cl_7$	$1.73 imes 10^{11}$	4.9	150.1

Table 3: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent Random Barrier Model ion-hopping rates, ω_{RBM} .

Figure 8: Dielectric spectra of 1-octyl-3-methylimidazolium tetrafluoroborate (C₈MIm BF₄). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε''_{der} . Lines have the same meaning as in Figure 6.

IL	$\omega_{\infty} \text{ [rad s}^{-1}\text{]}$	D	T_0 [K]
$C_8MIm Cl$	7.82×10^{13}	10.7	173.4
$C_8MIm Br$	5.60×10^{12}	11.5	156.8
$C_8MIm BF_4$	1.27×10^{13}	8.6	150.7
$C_8MIm \ PF_6$	2.73×10^{13}	9.0	155.4
$C_8MIm TCM$	$3.26 imes 10^{13}$	6.6	159.8
C_8MIm triflate	-	-	-
$C_8MIm AlCl_4$	2.58×10^{12}	5.2	155.8
$C_8MIm TFSI$	7.01×10^{12}	6.8	152.6
$C_8MIm Al_2Cl_7$	3.36×10^{12}	4.9	153.1

Table 4: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent peak-frequency of M", $\omega_{M"}$.

Figure 9: Dielectric spectra of 1-octyl-3-methylimidazolium hexafluorophosphate (C₈MIm PF₆). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε''_{der} . Lines have the same meaning as in Figure 6.

IL	$\omega_{\infty} \text{ [rad s}^{-1}\text{]}$	D	T_0 [K]
$C_8MIm Cl$	1.65×10^{12}	9.2	179.7
$C_8MIm Br$	2.81×10^{14}	15.2	148.4
$C_8MIm BF_4$	1.42×10^{13}	9.9	147.9
$C_8MIm \ PF_6$	5.25×10^{13}	12.0	147.0
$C_8MIm TCM$	$2.67 imes 10^{13}$	7.4	158.0
C_8MIm triflate	-	-	-
$C_8MIm AlCl_4$	2.66×10^{12}	5.6	156.5
$C_8MIm TFSI$	$5.36 imes 10^{12}$	7.4	151.3
$C_8MIm Al_2Cl_7$	2.80×10^{12}	5.5	152.1

Table 5: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent relaxation rate of the primary, α dielectric relaxation, ω_{α} .

Figure 10: Dielectric spectra of 1-octyl-3-methylimidazolium tricyanomethanide (C₈MIm TCM). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε'_{der} . Lines have the same meaning as in Figure 6.

IL	$\omega_{\infty} \text{ [rad s}^{-1}\text{]}$	D	T_0 [K]
$C_8MIm Cl$	1.57×10^{14}	12.0	171.1
$C_8MIm Br$	2.09×10^{12}	11.2	158.0
$C_8MIm BF_4$	3.26×10^{11}	7.9	153.0
$C_8MIm \ PF_6$	3.70×10^{11}	7.9	159.3
$C_8MIm TCM$	$4.81 imes 10^{11}$	6.6	158.8
C_8MIm triflate	-	-	-
$C_8MIm AlCl_4$	$1.93 imes 10^{11}$	6.2	151.0
$C_8MIm TFSI$	1.91×10^{11}	6.8	152.2
$C_8MIm Al_2Cl_7$	2.65×10^{11}	6.3	145.9

Table 6: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent rate of the slower, sub- α dielectric relaxation, $\omega_{sub-\alpha}$.

Figure 11: Dielectric spectra of 1-octyl-3-methylimidazolium triflate (C₈MIm triflate). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε''_{der} . Lines have the same meaning as in Figure 6.

IL	$\sigma_{\infty} [{\rm S \ cm^{-1}}]$	D	$T_0 [K]$
$C_8MIm Cl$	19.2	10.3	174.7
$C_8MIm Br$	10.5	10.7	158.7
$C_8MIm BF_4$	3.1	8.4	150.6
$C_8MIm \ PF_6$	3.6	8.8	155.0
$C_8MIm TCM$	2.1	5.5	163.9
C_8MIm triflate	-	-	-
$C_8MIm AlCl_4$	1.2	5.9	152.5
$C_8MIm TFSI$	1.8	7.1	150.3
$C_8MIm Al_2Cl_7$	0.67	5.1	151.0

Table 7: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent dc ionic conductivities, σ_0 [S cm⁻¹].

Figure 12: Dielectric spectra of 1-octyl-3-methylimidazolium tetrachlorodialuminate (C₈MIm AlCl₄). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε''_{der} . Lines have the same meaning as in Figure 6.

IL	$\eta_{\infty}^{-1} [{\rm Pa}^{-1} {\rm s}^{-1}]$	D	T_0 [K]
$C_8MIm Cl$	1.1×10^5	10.6	173.5
$C_8MIm Br$	1.02×10^5	11.2	160.2
$C_8MIm BF_4$	2.83×10^4	9.3	147.4
$C_8MIm \ PF_6$	3.24×10^4	9.5	152.6
$C_8MIm TCM$	1.43×10^4	5.6	163.3
C_8MIm triflate	-	-	-
$C_8MIm AlCl_4$	$1.39 imes 10^4$	6.4	149.8
$C_8MIm TFSI$	2.16×10^4	7.4	149.0
$C_8MIm Al_2Cl_7$	4.79×10^3	4.6	155.1

Table 8: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent fluidities, η_0^{-1} [Pa⁻¹ s⁻¹].

Figure 13: Dielectric spectra of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C₈MIm TFSI). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε''_{der} . Lines have the same meaning as in Figure 6.

Figure 14: Dielectric spectra of 1-octyl-3-methylimidazolium heptachlorodialuminate (C₈MIm Al₂Cl₇). (Top) Real part of complex conductivity, $\sigma'(\omega)$. (Middle) Imaginary part of complex electric modulus, $M''(\omega)$. (Bottom) Derivative representation of the real part of complex dielectric permittivity, ε'_{der} . Lines have the same meaning as in Figure 6.

Figure 15: Shape parameters, α (closed symbols) and β (open symbols), of Havriliak-Negami fits applied to the imaginary part of the complex electric modulus.

Figure 16: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium chloride (C₈MIm Cl). Rates are obtained by analysis of the dielectric spectra ($\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha}$) and rheology (ω_{η}). Lines correspond to fits by the VFT equation.

Figure 17: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium bromide (C₈MIm Br). Rates are obtained by analysis of the dielectric spectra ($\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha}$) and rheology (ω_{η}). Lines correspond to fits by the VFT equation.

Figure 18: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium tetrafluoroborate (C₈MIm BF₄). Rates are obtained by analysis of the dielectric spectra ($\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha}$) and rheology (ω_{η}). Lines correspond to fits by the VFT equation.

Figure 19: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium hexafluorophosphate (C₈MIm PF₆). Rates are obtained by analysis of the dielectric spectra $(\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha})$ and rheology (ω_{η}) . Lines correspond to fits by the VFT equation.

Figure 20: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium tricyanomethanide (C₈MIm TCM). Rates are obtained by analysis of the dielectric spectra $(\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha})$ and rheology (ω_{η}) . Lines correspond to fits by the VFT equation.

Figure 21: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium triflate (C₈MIm triflate). Rates are obtained by analysis of the dielectric spectra ($\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha}$) and rheology (ω_{η}). Lines correspond to fits by the VFT equation.

Figure 22: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium tetrachlorodialuminate (C₈MIm AlCl₄). Rates are obtained by analysis of the dielectric spectra (ω_{RBM} , $\omega_{\text{M}''}$, ω_{α} , $\omega_{\text{sub-}\alpha}$) and rheology (ω_{η}). Lines correspond to fits by the VFT equation.

Figure 23: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C₈MIm TFSI). Rates are obtained by analysis of the dielectric spectra ($\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha}$) and rheology (ω_{η}). Lines correspond to fits by the VFT equation.

Figure 24: Temperature-dependent relaxation rates of the 1-methyl-3-octylimidazolium heptachlorodialuminate (C₈MIm Al₂Cl₇). Rates are obtained by analysis of the dielectric spectra $(\omega_{\text{RBM}}, \omega_{\text{M}''}, \omega_{\alpha}, \omega_{\text{sub-}\alpha})$ and rheology (ω_{η}) . Lines correspond to fits by the VFT equation.

References

References

 Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer, Berlin, 2003; p 729.