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Purity of Starting Materials

The purity of the synthesized 1-methyl-3-octylimidazolium chloride was ascertained by pro-
ton and carbon NMR measured on a Jeol ECX 400 MHz NMR spectrometer. The purity
was estimated at > 99.9%. The NMR spectra are provided in Figures 1 and 2. The CgMIm
Cl was further used in the preparation of the CgMIm AICl; and Al;Cl; ILs. On the basis of
the purity of the CgMIm CI their purities were estimated at > 99%. The other ionic liquids

were purchased from Iolitec and used as received without further verification of purity. Pu-



rities given in Experimental Methods are reproduced from the product information sheets

provided by Iolitec.
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Figure 1: 'H NMR spectrum of CgMIm Cl in deuterated acetonitrile.
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Figure 2: 13C NMR spectrum of CsMIm Cl in deuterated acetonitrile.



Broadband Dielectric Spectroscopy

The three formalisms in which the dielectric data are presented, o*(w), M*(w), and £*(w),

are each interrelated.! The complex electric modulus is defined as the inverse of complex

dielectric permittivity, M*(w) = a*td). The imaginary part of complex electric modulus

is then given as M"(w) = (E,M)i;% The complex conductivity is related to complex
dielectric permittivity as o*(w) = iweoe*(w), where €y is the permittivity of free space. The
real part of complex conductivity is then directly related to the imaginary part of complex
dielectric permittivity as o’(w) = wepe” (w).

The broadband dielectric spectra of the 1-methyl-3-octylimidazolium ionic liquids are

presented in Supplementary Figures 6, 7, 8, 9, 10, 11, 12, 13, 14.

Relaxation Rates

The temperature dependent relaxation rates were fit using the Vogel-Fulcher-Tammann equa-

— DT
tion, w; = wooeT*Tg . The fit parameters are given in Tables 3, 4, 5, 6.

Density

The mass densities measured using an Anton-Paar SVM-3000 Stabinger viscometer, are

presented in Supplementary Figure 3.
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Figure 3: Temperature dependent mass densities of 1-methyl-3-octylimidazolium ionic liquids

with the indicated anions. Lines correspond to linear fits, p = mT + b. Fit parameters are
provided in Table 1.

Table 1: Linear fit parameters of temperature dependent mass density.

IL m b

CgMIm Cl —5.555 x 107*  1.1732
C4MIm Br —6.439 x 107*  1.3601
Ce¢MIm BF, —6.567 x 10~*  1.2980
CgMIm PFg —7.434 x 107*  1.4577

CeMIm TCM  —6.259 x 10~* 1.1872
CsMIm triflate —7.342 x 10*  1.3999
CgMIm AICl; - -
CgMIm TFSI —8.650 x 10~* 1.5765
CgMIm A12017 - -




Differential Scanning Calorimetry
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Figure 4: Measured heat flow on cooling of the indicated ILs. Each IL has a glass transition
temperature (evidenced by the step decrease in heat flow) and no evidence of crystallization.

Cooling rate = 10°Cmin~!
experimental artifact.
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Figure 5: Measured heat flow on cooling of CsMIm PFg. This IL undergoes crystallization
at 223 K. Cooling/heating rate = 10°C min~!



High-Frequency Shear Modulus

The values of high-frequency limiting, glassy shear modulus, G, used in Maxwell’s relation

to calculate the structural relaxation rate, w, = G /no, are presented in Table 2.

Table 2: High-frequency limiting, glassy shear moduli, G, of the investigated ILs.

IL G |GPa|
CgMIm Cl 0.4
C4MIm Br 0.6

CsMIm PFs 0.6
CeMIm TCM 0.6
CgMIm triflate 0.4
CsMIm TFSI 0.5
CsMIm Al,Cl; 0.5
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Figure 6: Frequency, w, and temperature-dependent dielectric spectra of 1-octyl-3-
methylimidazolium chloride (CsMIm Cl). (Top) Real part of complex conductivity, o' (w).
Lines represent fits by the RBM. Arrows correspond to the ion-hopping rates, wrpy. (Mid-
dle) Imaginary part of complex electric modulus, M”(w). Lines represent fits by a single
Havriliak-Negami (HN) function. The arrows correspond to the peak maximum, wy;». (Bot-
tom) Derivative representation of the real part of complex dielectric permittivity, /... Solid
lines represent the total fit obtained by a combination of up to two HN functions. The sep-
arate component fit functions are presented as dashed and dotted lines. The shaded areas
depict the contribution of the primary, a dielectric relaxation. The arrows correspond to the
a-relaxation rate, w,.
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Figure 7: Dielectric spectra of 1-octyl-3-methylimidazolium bromide (CgMIm Br). (Top)
Real part of complex conductivity, o'(w). (Middle) Imaginary part of complex electric mod-
ulus, M"(w). (Bottom) Derivative representation of the real part of complex dielectric
permittivity, €],,. Lines have the same meaning as in Figure 6.

Table 3: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent
Random Barrier Model ion-hopping rates, wrpm-

IL Weo [rad s7!| D To [K]
CsMIm Cl 894 x 10 9.2 1779
CgMIm Br 1.11 x 103 11.3 155

CsMIm BF, 1.41 x 102 8.1 150.7
CgMIm PFg 2.04 x 102 8.8 154.2
CgMIm TCM  1.11 x 102 55 161.7
CgMIm triflate - -
CgMIm AICl,  4.08 x 10" 5.8 151.6
CgMIm TFSI 559 x 10" 6.6 151.6
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Figure 8: Dielectric spectra of 1-octyl-3-methylimidazolium tetrafluoroborate (CsMIm BFy).
(Top) Real part of complex conductivity, o’(w). (Middle) Imaginary part of complex electric
modulus, M"(w). (Bottom) Derivative representation of the real part of complex dielectric
permittivity, €],,. Lines have the same meaning as in Figure 6.

Table 4: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent
peak-frequency of M”, wyy.

IL Weo [rad s7!] D To [K]
CsMIm (1 7.82 x 10 10.7 1734
CgMIm Br 5.60 x 102 11.5 156.8

CsMIm BF, 1.27 x 101 8.6  150.7
CgMIm PFg 2.73x 10 9.0 1554
CgMIm TCM  3.26 x 10" 6.6 159.8
CgMIm triflate - - -

CgMIm AICl, 258 x 10 5.2 1558
CgMIm TFSI  7.01 x 102 6.8 1526
CgMIm AL Cl; 3.36 x 102 4.9 153.1

10
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Figure 9: Dielectric spectra of 1-octyl-3-methylimidazolium hexafluorophosphate (CgMIm
PFs). (Top) Real part of complex conductivity, o’(w). (Middle) Imaginary part of complex
electric modulus, M"(w). (Bottom) Derivative representation of the real part of complex
dielectric permittivity, €],,. Lines have the same meaning as in Figure 6.

Table 5: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent
relaxation rate of the primary, « dielectric relaxation, wy,.

IL Weo [rad s7!] D To [K]
CsMIm (1 1.65 x 10" 9.2 179.7
CgMIm Br 2.81 x 10 152 1484

CsMIm BF, 1.42 x 10 9.9 1479
CgMIm PFg 5.25 x 101 12.0 147.0
CgMIm TCM  2.67 x 10" 7.4 1580
CgMIm triflate - - -

CgMIm AICl;  2.66 x 102 56 156.5
CgMIm TFSI 536 x 102 74 151.3
CgMIm ALCl; 2.80 x 102 5.5 152.1

11
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Figure 10: Dielectric spectra of 1-octyl-3-methylimidazolium tricyanomethanide (CgMIm
TCM). (Top) Real part of complex conductivity, ¢’(w). (Middle) Imaginary part of complex
electric modulus, M”"(w). (Bottom) Derivative representation of the real part of complex
dielectric permittivity, €],,. Lines have the same meaning as in Figure 6.

Table 6: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent
rate of the slower, sub-a dielectric relaxation, wgyp-q-

IL Weo [rad s7!] D To [K]
CsMIm (1 1.57 x 10 12.0 171.1
CgMIm Br 2.09 x 102 11.2 158.0

CsMIm BF, 3.26 x 10* 79 153.0
CgMIm PFg 3.70 x 10 7.9  159.3
CgMIm TCM  4.81 x 10" 6.6 1588
CgMIm triflate - -
CgMIm AICl; 193 x 10" 6.2 151.0
CgMIm TFSI 191 x 10" 6.8 152.2
CgMIm ALCl; 2.65 x 10" 6.3 145.9
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Figure 11: Dielectric spectra of 1-octyl-3-methylimidazolium triflate (CgMIm triflate). (Top)
Real part of complex conductivity, o'(w). (Middle) Imaginary part of complex electric mod-
ulus, M”(w). (Bottom) Derivative representation of the real part of complex dielectric
permittivity, €],,. Lines have the same meaning as in Figure 6.

Table 7: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent
dc ionic conductivities, op [S em™!].

IL O [Scem™!| D To K]
CgMIm Cl 19.2 10.3  174.7
CgMIm Br 10.5 10.7 158.7
CgMIm BF, 3.1 8.4 150.6
CsMIm PFg 3.6 8.8 155.0
CgMIm TCM 2.1 5.5 163.9
CgMIm triflate - - -
CgMIm AICl; 1.2 59 1525
CgMIm TFSI 1.8 7.1 150.3

13
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Figure 12: Dielectric spectra of 1-octyl-3-methylimidazolium tetrachlorodialuminate (CgMIm
AlICly). (Top) Real part of complex conductivity, o'(w). (Middle) Imaginary part of complex
electric modulus, M”"(w). (Bottom) Derivative representation of the real part of complex
dielectric permittivity, €],,. Lines have the same meaning as in Figure 6.

Table 8: Vogel-Fulcher-Tammann fit parameters obtained from the temperature-dependent
fluidities, n, ' [Pa~™! s71].

IL ne [Pa~ts™!] D To [K]
CgMIm CI 1.1 x 10° 10.6 173.5
CgMIm Br 1.02 x 10° 11.2 160.2
CgMIm BF, 2.83 x 104 9.3 1474
CgMIm PFg 3.24 x 10* 9.5 152.6
CgMIm TCM  1.43 x 10* 5.6 163.3
CgMIm triflate - - -
CsMIm AIClL,  1.39 x 10* 6.4  149.8
CgMIm TFSI  2.16 x 10* 74 149.0
CgMIm ALCl, 4.79 x 10° 4.6 155.1

14
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Figure 13: Dielectric spectra of 1-octyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (CsMIm TFSI). (Top) Real part of complex conduc-
tivity, o'(w). (Middle) Imaginary part of complex electric modulus, M"(w). (Bottom)
Derivative representation of the real part of complex dielectric permittivity, €/,.. Lines have
the same meaning as in Figure 6.
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Figure 14: Dielectric spectra of 1-octyl-3-methylimidazolium heptachlorodialuminate
(CsMIm Al,Cl;). (Top) Real part of complex conductivity, o'(w). (Middle) Imaginary
part of complex electric modulus, M"(w). (Bottom) Derivative representation of the real
part of complex dielectric permittivity, €7,,. Lines have the same meaning as in Figure 6.
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Figure 15: Shape parameters, « (closed symbols) and 5 (open symbols), of Havriliak-Negami
fits applied to the imaginary part of the complex electric modulus.
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Figure 16: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium chlo-
ride (CgMIm Cl). Rates are obtained by analysis of the dielectric spectra (wrpm, W, Way,
Wsub-o) and rheology (w,). Lines correspond to fits by the VFT equation.
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Figure 17: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium bro-
mide (CgMIm Br). Rates are obtained by analysis of the dielectric spectra (wrpm, Wy, Wa,
Wsub-o) and rheology (w,). Lines correspond to fits by the VFT equation.
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Figure 18: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium
tetrafluoroborate (CsMIm BF,). Rates are obtained by analysis of the dielectric spectra
(WRBM, WM, Wa, Wsub-o) and rheology (w,). Lines correspond to fits by the VFT equation.
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Figure 19: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium hex-
afluorophosphate (CsMIm PFg). Rates are obtained by analysis of the dielectric spectra
(WRBM, WM, Wa, Wsub-o) and rheology (w,). Lines correspond to fits by the VFT equation.
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Figure 20: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium tri-
cyanomethanide (CgMIm TCM). Rates are obtained by analysis of the dielectric spectra
(WRBM, WM, Wa, Wsub-o) and rheology (w,). Lines correspond to fits by the VFT equation.
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Figure 21: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium tri-
flate (CsMIm triflate). Rates are obtained by analysis of the dielectric spectra (wrpm, Wy,
Wa, Wsub-o) and rheology (w;). Lines correspond to fits by the VFT equation.
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Figure 22: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium
tetrachlorodialuminate (CsMIm AlCly). Rates are obtained by analysis of the dielectric
spectra (WrBM, W\, Wa, Wsub-o) and rheology (w,). Lines correspond to fits by the VFT

equation.
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Figure 23: Temperature-dependent relaxation rates of the 1-octyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (CsMIm TFSI). Rates are obtained by analysis of the di-
electric spectra (wWrpMm, Wwm”, Wa, Wsub-o) and rheology (w,). Lines correspond to fits by the
VFT equation.
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Figure 24: Temperature-dependent relaxation rates of the 1-methyl-3-octylimidazolium hep-
tachlorodialuminate (CgMIm Al;Cl;). Rates are obtained by analysis of the dielectric spectra
(WRBM, WM, Wa, Wsub-o) and rheology (w;). Lines correspond to fits by the VFT equation.
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