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Figure S1. The distances measured between MgA, MgB, MgC and D761, D760, D618 from
ensemble equilibrium simulations. The three magnesium ions were modeled according to
version 1 of the PDB (7BV2) structure. The distances were measured between the magnesium
ion (in pink spheres) and the atom OD1 of the aspartic acid residue, for the insertion state of
the RdARp complex, bound with ATP (A), RTP (B), dATP (C), and GTP (D). In comparison, the

distances between MgB and D623 are large, about 6.8-6.9 A as labeled in all the above systems.
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Figure S2. The RMSDs during 0-5 ns and 5-10 ns MD in five alchemical MD simulations with
A1 =10.0,0.25,0.50,0.75,1.0, shown with 100 trajectory frames for each in the alchemical
binding free energy calculation for the ATP insertion state. (A & B) The RMSD values of the
fingers subdomain in SARS-CoV-2 RdRp during 0-5 ns (A) and during 5-10 ns MD simulations
(B). (C & D) The RMSD values of the palm subdomain in SARS-CoV-2 RdRp during 0-5 ns

(C) and during 5-10 ns MD simulations (D).



Closed state AG5(kJ/mol) AG;(kJ/mol) AGy(kcal/mol)
ATP -75.83 -28.07 -11.42
RTP -66.76 -28.89 -9.06
dATP -67.83 -25.79 -10.06
GTP -66.47 -31.08 -8.47

Table S1. The free energetics obtained from alchemical simulations for binding free energy

calculations in SARS-CoV-2 RdRp with an NTP (ATP/RTP/dATP/GTP) bound in the closed or

insertion state. The corresponding thermodynamic cycles [1, 2] for the calculations are

presented in main Figure 2: AG is the free energy converting dummy to NTP calculated in the

free solution, and AGj is the free energy converting dummy to NTP conducted inside the

protein complex. For each species, AG,(NTP) = AGz — AG; + AG,, with AG, = 0 as the

dummy is set to void in all cases.
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Figure S3. The dihedral angle distributions formed by four atoms of C1’, C2’, N1, C2 in
template nt or RNA3’ in 1 = 0,0.25,0.5,0.75,10f the alchemical simulation windows for
SARS-CoV-2 RdRp with ATP, RTP, dATP, GTP bound in the closed active site (B/C/D/E) (/eft),

respectively, histograms are shown on the right. The structures are shown in (A).
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Figure S4. The hydrogen bonding association patterns between the active site amino acids and
the non-cognate nucleotides modeled in closed state of SARS-CoV-2 RdRp, (A) for dATP and
(B) for GTP, with the hydrogen bonding occupancies calculated from the ensemble equilibrium
simulations (leff) and the molecular views (middle), the electrostatic potential generated by
solving the Poisson-Boltzmann equation using the APBS [3] in VMD [4] (right). The protein
is colored based on the electrostatic potential from dark red (most negative) to dark blue (most
positive), the values in the color bar are in units of kgT/|e|.



ATP  -75.7219 -851.1100 627.7952 -9.5211 -73.817
RTP  -79.4468 -885.6985 632.3792 -9.7640 -81.945
dATP -77.7801 -833.4727 643.3111 -9.6039 -66.398
GTP  -78.3432 -796.1425  628.9265 -9.7646 -61.082

Table S2. The binding energetics calculated between insertion nucleotides ATP/dATP/GTP as
well as nucleotide analogue RTP and SARS-CoV-2 complex by using gromacs g-mmpbsa with

g-mmpbsa command default [5, 6].
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Figure S5. The total insertion nucleotide binding energetics (from MM/PBSA calculations)
contributed by each amino acid and nucleotide in SARS-CoV-2 RdRp with (A) for ATP, (B)
the relative binding energy for RTP according to ATP, (C) the relative binding energy for dATP,

(D) the relative binding energy for GTP. The key residues contribute most to

stabilization/destabilization are labeled.
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Figure S6. The dihedral angle distributions formed by four atoms of C1°’, C2’, N1, C2 in
template nt or RNA3’ in the alchemical simulation windows 4 = 0,0.25,0.5,0.75,1for SARS-
CoV-2 RdRp with ATP, RTP, dATP, GTP initially bound in the open active site (B/C/D/E) (lef),

respectively, histograms are shown on the right. The structures are shown in (A).



Open state AG5(kJ/mol) AG;(kJ/mol) AGy(kcal/mol)
ATP -64.95 -29.46 -8.49
RTP -65.41 -28.78 -8.72

dATP -55.12 -26.33 -6.98
GTP -57.04 -28.52 -6.79

Table S3. The free energetics obtained from alchemical simulations for binding free energy

calculations in SARS-CoV-2 RdRp with an NTP (ATP/RTP/dATP/GTP) bound in the open state.

The corresponding thermodynamic cycles [1, 2] for the calculations are presented in main

Figure 2: AG, is the free energy converting dummy to NTP calculated in the free solution,

and AGjis the free energy converting dummy to NTP conducted inside the protein complex.

Hence, AG,(RTP) = AG3; — AG, + AG,, with AG, = 0 due to the dummy is set as void in

all these cases.
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Figure S7. The schematic free energy profiles or potentials of mean force (PMFs) from
the nucleotide initial binding to insertion of the cognate ATP and nucleotide analogue
RDV-TP (or RTP). The PMFs of ATP and RTP are shown in black and purple curves,
respectively. The two PMFs were calculated from the umbrella sampling simulation studies
[7], as shown in (A and B), with AG>*~ 2.7 kcal/mol for RTP and AG*~ 5.1 kcal/mol for ATP,
and the insertion barrier AH=~ 1.5 kcal/mol for RTP and AH~~ 2.6 kcal/mol for ATP; without
knowing the relative placement between the two PMFs yet. With current alchemical
calculations, the two PMFs are able to be placed together as shown in (C). The relative
binding free energies between RTP and ATP are calculated here as AAG _ (open) (~ -0.2
kcal/mol) and AAG_(closed) (~2.4 kcal/mol), respectively, for the initial binding (open)

and insertion states (closed).
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Figure S8. The histograms on measured distances between nucleotide RTP base and template
nt (rUTP) base on atoms involved for base pairing (A) and base stacking (B). (A) is taken from
main Fig 6B for comparison, while for (B) In the inset right, the stacking distances between
rUTP base and template nt base. are shown over the simulation time. In the inset left, the

structures of nucleotide RTP and the associating template rUTP are shown.
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Figure S9. The hydrogen bonding association patterns between the active site amino acids and
the nucleotide binding initially in open state of SARS-CoV-2 RdRp, (A) for RTP and (B) for
GTP with the hydrogen bonding occupancies calculated from the ensemble equilibrium
simulations (/eff) and the molecular views around the active site (middle), the electrostatic
potential generated by solving the Poisson-Boltzmann equation using the APBS [3] in VMD
along with RTP/ATP/GTP/dATP shown in vdW sphere (righf). The protein is colored based on
the electrostatic potential from low (negative) by red to high (positive) by blue, the values in
the color bar are in units of kgT/|e|.



ATP  -68.9669 -906.1565  734.3293 -10.1123 -60.025
RTP  -83.0573 -853.1327  685.8072 -10.4425 -62.398
dATP -67.9788 -948.9541  772.4889 -10.0580 -60.886
GTP  -69.6758 -832.1274  676.9507 -9.0651 -55.961

Table S4. The binding energetics calculated between initial binding nucleotides
ATP/RTP/dATP/GTP and SARS-CoV-2 complex by using gromacs g-mmpbsa with g-mmpbsa

command default [5, 6].
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Figure S10. The total initial nucleotide binding energetics contributed by each amino acid and
nucleotide in SARS-CoV-2 RdRp with (A) for ATP, (B) the relative binding energy for RTP
according to ATP, (C) the relative binding energy for dATP, (D) the relative binding energy for

GTP. The key residues contribute most to stabilization/destabilization are labeled.
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