Supplementary Material

Perylene-based molecular device: Multifunctional spintronic and

spin caloritronic applications

Xuming Wu,^{a,b} Shifa Xiao,^a Jun Quan,^a Chunhua Tian^{*a} and Guoying Gao^{*b}

^aCollege of Physical Science and Technology, Lingnan Normal University, 524048 Zhanjiang, China. E-mail: chunhuatian@lingnan.edu.cn

^bSchool of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China. E-mail: guoying_gao@mail.hust.edu.cn

Fig. S1 The spin-dependent band structure of the perylene molecule without (a) and with (b) hydrogenation.

Fig. S2 The spin-dependent main atomic orbital density of states of the perylene molecule without (a) and with (b,c) hydrogenation.

Fig. S3 The phonon spectrum of the perylene molecule, which is presented in a smaller frequency range (b) in order to indicate whether there is imaginary frequency.

Fig. S4 The spin-up (a) and spin-down (b) Fermi-Dirac distribution differences at $\Delta T = 40$, 60 and 80 K as a function of energy in PC at $T_L = 300$ K, (c) and (d) are the same as (a) and (b) but in APC.

Fig. S5 The thermal spin-dependent current versus T_L for different ΔT (a) and versus ΔT for different T_L (c) in APC at the bias voltage of -0.4 V. The corresponding polarization of thermal spin current versus T_L for different ΔT (b) and versus ΔT for different T_L (d).