## **Supporting Information**

## Nitrogen and Sulfur Co-Doped $Ti_3C_2T_x$ MXene for High-Rate Lithium-Ion Batteries

Renfei Cheng<sup>a,b</sup>, Tao Hu<sup>c</sup>, Jinxing Yang<sup>a, b</sup>, Zuohua Wang<sup>d</sup>, Weizhen Wang<sup>a</sup>, Yan Liang<sup>a</sup>, Zhiqing Yang<sup>a</sup>, Hongwang Zhang<sup>d</sup>, Xiaohui Wang<sup>a,\*</sup>

<sup>a</sup> Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

<sup>b</sup> School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

<sup>c</sup> Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China

<sup>d</sup> National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

\* Corresponding author,

E-mail address: wang@imr.ac.cn (X.H. Wang)



**Fig. S1** SEM images of (a)  $Ti_3C_2T_x$ , (b)  $N-Ti_3C_2T_x$ , (c)  $NS_{0.1}-Ti_3C_2T_x$ , and (d)  $NS_{0.5}-Ti_3C_2T_x$ .



**Fig. S2** (a)  $NS_{0.1}$ -Ti<sub>3</sub>C<sub>2</sub> $T_x$ , corresponding elemental mapping images (b) for the distribution of Ti, N, O and S elements, respectively. (c)  $NS_{0.5}$ -Ti<sub>3</sub>C<sub>2</sub> $T_x$ , corresponding elemental mapping images (d) for the distribution of Ti, C, O and S elements, respectively.



**Fig. S3** Typical STEM image and EDS mapping of  $NS_{0.3}$ -Ti<sub>3</sub>C<sub>2</sub> $T_x$ . (a) Cross sectional microstructure of  $NS_{0.3}$ -Ti<sub>3</sub>C<sub>2</sub> $T_x$ . (b) HAADF image of marked area by green rectangular and (c) corresponding elemental mappings of Ti, C, N, and S elements. (d) STEM-EDS spectrum of  $NS_{0.3}$ -Ti<sub>3</sub>C<sub>2</sub> $T_x$ . The atomic ratios of elements are listed in Table S1.



**Fig. S4** Nitrogen adsorption/desorption isotherms of (a) pristine  $Ti_3C_2T_x$ , (b)  $NS_{0.1}-Ti_3C_2T_x$ , (c)  $NS_{0.3}-Ti_3C_2T_x$  and (d)  $NS_{0.5}-Ti_3C_2T_x$ . The BET specific surface areas of aforementioned samples are 3.2, 6.4, 2.0 and 1.9 m<sup>2</sup> g<sup>-1</sup>, respectively.



Fig. S5 (a) XRD patterns and (b) Raman spectra of pristine  $Ti_3C_2T_x$  and N, S codoped  $Ti_3C_2T_x$ .



**Fig. S6** (a) XPS survey spectra of pristine  $Ti_3C_2T_x$ ,  $N-Ti_3C_2T_x$ ,  $NS_{0.1}-Ti_3C_2T_x$ ,  $NS_{0.3}-Ti_3C_2T_x$ , and  $NS_{0.5}-Ti_3C_2T_x$ . High-resolution C 1s XPS spectra of (b)  $Ti_3C_2T_x$ , (c)  $N-Ti_3C_2T_x$ , (d)  $NS_{0.1}-Ti_3C_2T_x$ , (e)  $NS_{0.3}-Ti_3C_2T_x$ , and (f)  $NS_{0.5}-Ti_3C_2T_x$ . The XPS spectra were recorded after Ar sputtering for 120 s.



Fig. S7 High-resolution Ti 2p XPS spectra of pristine  $Ti_3C_2T_x$ . The XPS spectra were recorded after Ar sputtering for 120 s.



**Fig. S8** CV curves of (a) pristine  $Ti_3C_2T_x$ , (c)  $NS_{0.1}$ - $Ti_3C_2T_x$ , (e)  $NS_{0.5}$ - $Ti_3C_2T_x$  electrodes. Galvanostatic charge and discharge curves of (b) N- $Ti_3C_2T_x$ , (d)  $NS_{0.1}$ - $Ti_3C_2T_x$  and (f)  $NS_{0.5}$ - $Ti_3C_2T_x$  cycled at various rates.



**Fig. S9** Diffusion barrier profiles of Li on (a)  $Ti_3C_2O_2$ , (b)  $Ti_3C_2N_2$ , (c)  $Ti_3C_2S_2$  and (d)  $Ti_3C_2(NS)_2$  and the corresponding energetically optimized Li migration pathways from side and top view.



Fig. S10 XRD pattern of the as-prepared  $LiMn_{0.5}Fe_{0.5}PO_4$  product. TEM image (b), and SEM images (c, d) of  $LiMn_{0.5}Fe_{0.5}PO_4/C$  material.



Fig. S11 (a) Typical charge/discharge curves of  $LiMn_{0.5}Fe_{0.5}PO_4/C$  at current rates ranging from 0.1 to 10C. (b) Rate capability.

**Table S1** Summary of atomic ratio in the  $NS_{0.3}$ -Ti<sub>3</sub>C<sub>2</sub> $T_x$ .

| NS <sub>0.3</sub> -Ti <sub>3</sub> C <sub>2</sub> $T$ | Element |       |      |      |      |      |       |      |
|-------------------------------------------------------|---------|-------|------|------|------|------|-------|------|
| x                                                     | С       | 0     | F    | Al   | Si   | S    | Ti    | Cu   |
| Subsurface                                            | 25.22   | 13.59 | 5.02 | 0.68 | 0.35 | 1.11 | 45.36 | 8.67 |
| Interior                                              | 20.58   | 11.99 | 5.16 | 0.56 | 0.42 | 0.70 | 51.27 | 9.31 |

**Table S2** Atomic concentration of elements in surface layers of pristine– $Ti_3C_2T_x$ , N– $Ti_3C_2T_x$ , NS<sub>0.1</sub>– $Ti_3C_2T_x$ , NS<sub>0.3</sub>– $Ti_3C_2T_x$ , and NS<sub>0.5</sub>– $Ti_3C_2T_x$ , samples.

| Samula                                        |      |      |      | Element |     |     |     |
|-----------------------------------------------|------|------|------|---------|-----|-----|-----|
| Sample                                        | Ti   | 0    | С    | F       | Al  | Ν   | S   |
| pristine–Ti <sub>3</sub> C <sub>2</sub> $T_x$ | 19.0 | 21.3 | 36.0 | 14.4    | 9.3 | -   | -   |
| N–Ti <sub>3</sub> C <sub>2</sub> $T_x$        | 27.2 | 25.1 | 32.1 | 7.4     | 5.2 | 3.0 | -   |
| $NS_{0.1}-Ti_3C_2T_x$                         | 10.9 | 17.4 | 52.6 | 8.2     | 6.9 | 2.5 | 1.5 |
| $NS_{0.3}-Ti_3C_2T_x$                         | 12.0 | 16.7 | 55.3 | 7.8     | 3.4 | 2.0 | 2.9 |
| $NS_{0.5}$ - $Ti_3C_2T_x$                     | 11.1 | 15.3 | 54.2 | 9.6     | 3.5 | 3.5 | 2.8 |

**Table S3** Ti 2p core level peak analyses of  $Ti_3C_2T_x$  MXenes after Ar<sup>+</sup> sputtering 120 s. The Ti 2p core level was fitted with a fixed area ratio of 2:1 for all Ti  $2p_{3/2}$ -Ti $2p_{1/2}$  and doublet separation of 5.5 eV for C–Ti–C, C–Ti–OH, C–Ti–O, C–Ti–S, C–Ti–N, and C–Ti–ON.

|                                           | Fraction / % |             |             |             |               |             |
|-------------------------------------------|--------------|-------------|-------------|-------------|---------------|-------------|
| Sample                                    | C–Ti–C       | C-Ti-N      | C-Ti-OH     | C–Ti–S      | C-Ti-O        | C-Ti-ON     |
|                                           | 454.9±0.1eV  | 455.5±0.1eV | 456.3±0.1eV | 457.0±0.1eV | 457.2eV±0.1eV | 458.2±0.1eV |
| pristine-Ti <sub>3</sub> C <sub>2</sub> T |              | _           | 28.6        |             |               | —           |
| x                                         | 53.6         |             |             | _           | 17.8          |             |
| N–Ti <sub>3</sub> C <sub>2</sub> $T_x$    | 40           | 5.0         | _           | _           | 50            | 5.0         |
| $NS_{0.1}-Ti_3C_2T_x$                     | 42.3         | 6.3         | _           | 4.2         | 40.9          | 6.3         |
| $NS_{0.3}$ - $Ti_3C_2T_x$                 | 41.5         | 1.2         | _           | 5.0         | 49.8          | 2.5         |
| $NS_{0.5}$ - $Ti_3C_2T_x$                 | 45.2         | 3.1         | -           | 6.2         | 42.4          | 3.1         |

| Samples                                          | Volume expansion (%) | Reference          |
|--------------------------------------------------|----------------------|--------------------|
| $NS_{0.3}$ -Ti <sub>3</sub> C <sub>2</sub> $T_x$ | 0.6                  | This work          |
| LiCoO <sub>2</sub>                               | 1.8                  | Ref. <sup>1</sup>  |
| VPO <sub>4</sub>                                 | 2.1                  | Ref. <sup>2</sup>  |
| NCM111                                           | 1.2                  | Ref. <sup>3</sup>  |
| $Nb_2CT_x$                                       | 2.3                  | Ref. <sup>4</sup>  |
| LiFePO <sub>4</sub>                              | 6.8                  | Ref. <sup>5</sup>  |
| VO <sub>2</sub>                                  | 6.0                  | Ref. <sup>6</sup>  |
| LiMn <sub>2</sub> O <sub>4</sub>                 | 16                   | Ref. <sup>7</sup>  |
| Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub>  | 0.8                  | Ref. <sup>8</sup>  |
| Graphite                                         | 10.7                 | Ref. <sup>9</sup>  |
| TiO <sub>2</sub>                                 | 3.7                  | Ref. <sup>10</sup> |

**Table S4.** Comparison of the volume expansion for  $NS_{0.3}$ -Ti<sub>3</sub>C<sub>2</sub> $T_x$  in our work with widely reported electrode materials.

## References

- 1 G. G. Amatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc. 1996, 143, 1114.
- 2 S. S. Fedotov, A. S. Samarin,; V. A. Nikitina, K. J. Stevenson, A. M. Abakumov, E.
   V. ACS Appl. Mater. Interfaces, 2019, 11, 12431-12440.
- 3 A. O. Kondrakov, A. Schmidt, J. Xu, H. Geßwein, R. Mönig, P. Hartmann, H. Sommer, T. Brezesinski, J. Janek, J. Phys. Chem. C, 2017, 121, 3286-3294.
- 4 R. Cheng, T. Hu, Z. Wang, J. Yang, R. Dai, W. Wang, C. Cui, Y. Liang, C. Zhang,
  C. Li, H. Wang, H. Lu, Z. Yang, H. Zhang, X. Wang, *Phys. Chem. Chem. Phys.*,
  2021, 23, 23173-23183.
- 5 H. Liu, C. Li, H. P. Zhang, L. J. Fu, Y. P. Wu, H. Q. Wu, J. Power Sources, 2006, 159, 717-720.
- 6 Q.Liu, G. Tan, P. Wang, S. C. Abeyweera, D. Zhang, Y. Rong, Y. A. Wu, J. Lu, C.-J. Sun, Y. Ren, Y. Liu, R. T. Muehleisen, L. B. Guzowski, J. Li, X. Xiao, Y. Sun, *Nano Energy*, 2017, **36**, 197-205.
- 7 M. M. Thackeray, J. Electrochem. Soc., 1995, 142, 2558-2563.
- 8 P. C. Tsai, W. D. Hsu, S. K. Lin, J. Electrochem. Soc., 2014, 161, A439.
- 9 M. Winter, J. O. Besenhard, M. E. Spahr, P. Novák, Adv. Mater., 1998, 10, 725-763.
- 10 X. Zhang, V. Aravindan, P. S. Kumar, H. Liu, J. Sundaramurthy, S. Ramakrishna,S. Madhavi, *Nanoscale* 2013, 5, 5973-5980.