Supplementary Materials for

DFT characterization of a new possible two-dimensional BN allotrope with a biphenylene network structure

Yang Han^{1,2*}, Tingxiang Hu¹, Xiaochuang Liu¹, Shijie Jia^{1,2}, Hangbing Liu¹, Junyu Hu¹, Guolei Zhang²,

Longbin Yang^{1,2}, Guo Hong³, Yi-Tung Chen⁴

¹Qingdao Innovation and Development Center of Harbin Engineering University, 266400 Qingdao, China

²College of Power and Energy Engineering, Harbin Engineering University, 150001 Harbin, China

³Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films,

College of Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077,

China.

⁴Department of Mechanical Engineering, University of Nevada, Las Vegas, NV 89154, USA

This file includes:

Supplementary discussion (Sec. 1):

1. Layered configuration design

Table S1

Supplementary Figures S1-S2

1. Layered configuration design

The 6 considered different possible construction patterns were obtained by displacing the second layer of *pbn*-BN in *a* and *b* lattice directions with the relative rotational angle α as another adjustable variable. All the representative *a*, *b* and α quantities selected based on geometric structure symmetry were listed in Tab. 1 with all obtained configurations given in Fig. S1. The initial layer distance was set at a layer thickness of single layer *h*-BN (~3.4 Å). Then the total energy of the 6 independent bilayer structures with different layer distances were calculated as shown in Fig. S2.

No. Quant	Displacement a	Displacement b	Angle $\alpha(\pi)$	Energy (eV)
1	0	0	0	-204.362
2	0.5	0	0	-204.374
3	0	0.5	0	-204.371
4	0.5	0.5	0	-204.364
5	0.25	0.5	0	-204.367
6	0.25	0.5	1.0	-204.366

Table S1 The 6 different representative a, b and α quantities selected used in design of the double layer structure of *pbn*-BN and the corresponding lowest total energy after optimizing the distance between the two layers.

Figure S1 The 6 configurations corresponding to the representative considered a, b and α quantities selected based on geometric structure symmetry listed in Tab. 1.

Figure S2 The total energy *E* change versus the layer distance *d* between the two layers in a bilayer *bpn-BN* structure. The 6 independent *a*, *b* and α quantities are given in the legends.