Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

The modulated oxygen evolution reaction performance of LaFeO₃ with abundant electronic structures via a design of stoichiometry offset

Yuan Zhang^a, Hang Xu^{a,b}, Mei Liu^{*,a}, Ji Qi^{a,b}, Linglong Hu^{a,c}, Ming Feng^{*,a} and Weiming Lü^{*,b}

^aKey Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China

^bFunctional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin 150080, China

^cJilin Key Laboratory of Solid Laser Technology and Application, College of Science, Changchun University of Science and Technology, Changchun 130022, China

E-mail addresses: liumei@jlnu.edu.cn (M. Liu), mingfeng@jlnu.edu.cn (M. Feng) and weiminglv@hit.edu.cn (W. M. Lü)

^{*}Corresponding author.

Results and discussion

Fig. S1. The XRD of all samples fabricated under different oxygen atmospheres.

Fig. S2. SEM scanning image of LFO

Fig. S3. The high-res Fe and O scans

Fig. S4. The CVs for all samples and their double layer charging capacitance

Fig. S5. Chronoamperometric response of LFO films under different oxygen pressures at the potential of $0.8~\rm{V}$ vs. RHE

	2p _{3/2}						2p _{1/2}					
	Fe ²⁺			Fe³+			Fe ²⁺			Fe ³⁺		
	peak position	full- width at half- maximu m	intensit y of fitted peaks	peak position	full- width at half- maximu m	intensit y of fitted peaks	peak position	full- width at half- maximu m	intensit y of fitted peaks	peak position	full- width at half- maximu m	intensit y of fitted peaks
0.02	710.26	1.8	13844.2	711.54	2.5	13206.0	724.05	1.8	13789.6	725.4	2.5	13454.2
0.2	710.3	1.7	12496.9	711.75	2.3	11790.3	724.1	1.7	12207.8	725.08	2.3	11950.9
2	710.17	1.85	10914.9	711.55	2.65	10198.1	723.85	1.85	10773.4	725.15	2.65	10582.3
20	710.1	1.9	19741.4	711.3	2.65	19488.0	723.9	1.9	20096.1	725.1	2.65	19792.0
50	710.2	1.85	8572.91	711.35	2.7	8474.39	724.0	1.85	8548.27	725.0	2.7	8597.53
150	709.93	1.7	1659.62	711.01	2.3	1881.75	723.8	1.7	1854.82	725.0	2.3	1942.32
200	710.05	1.55	7159.84	711.1	2.05	7179.8	723.4	1.55	7020.42	724.5	2.05	7259.43

Table S1. The Table of fitting parameters of Fe

		М-О		$O_{ ext{defect}}$			О-Н		
	peak position	full- width at half- maximu m	intensit y of fitted peaks	peak position	full- width at half- maximu m	intensit y of fitted peaks	peak position	full- width at half- maximu m	intensit y of fitted peaks
0.02	529.43	1.1	22080.3	532.24	1.65	36156.3	533.78	1.32	11667.9
0.2	529.43	1.05	20698.2	532.32	1.62	40847.7	533.75	1.46	14941.2
2	529.43	1.08	30763.7	532.17	1.66	45628.5	533.67	1.75	12925.9
20	529.4	1.3	17652.9	532.25	1.56	38021.8	533.5	1.98	12772.8
50	529.35	1.2	19375.7	532.14	1.5	39453.3	533.24	1.56	17068.0
150	529.67	1	9239.1	532.21	1.48	28075.4	533.22	1.8	16953.4
200	529.55	1.04	7145.2	532.16	1.5	14201.1	533.2	2	7485.2

Table S2. The Table of fitting parameters of O

Oxygen pressure	0.02 mTorr	0.2 mTorr	2 mTorr	20 mTorr	50 mTorr	150 mTorr	200 mTorr
Fe ²⁺	58.5%	53.2%	46.9%	41.8%	38.8%	36.9%	35.0%
O_{defect}	71.5%	70.5%	68.6%	66.2%	65.0%	61.9%	59.2%

Table S3. The stoichiometric ratios of Fe^{2+} and O_{defect}

Oxygen pressure	0.02 mTorr	0.2 mTorr	2 mTorr	20 mTorr	50 mTorr	150 mTorr	200 mTorr
capacitance (µF)	4.5	5.1	7.7	8.2	6.4	6.1	5.9

Table S4. The capacitance values of all samples