Supporting Information

Analysis of oxygen evolution activity of layer double hydroxides

(LDHs) using machine learning guidance

Chenyang Wei,^a Dingyi Shi,^b Fengyi Zhou,^a Zhaohui Yang,^a Zhenchuan Zhang,^a Zhimin Xue^{*c} and Tiancheng Mu^{*a}

^{a.} Department of Chemistry, Renmin University of China, Beijing, 100872, China. E-mail: tcmu@ruc.edu.cn

^{b.} College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. E-mail: lir@buct.edu.cn

^{c.} Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China. E-mail: zmxue@bjfu.edu.cn

Figure S1 The performance of each algorithm in training set (a) and testing set (b) based on Binary Representation (without measurement conditions for C_{dl}).

Figure S2 The performance of each algorithm in training set (a) and testing set (b) based on Atom Number Representation (atom number as inputs directly).

Figure S3 The performance of each algorithm in training set based on Binary Representation (with measurement conditions for C_{dl}).

Figure S4 The Shapley Additive explanation (SHAP) values of Random Forest Regression

Figure S5 The Shapley Additive explanation (SHAP) values of XGBoost Regression

Figure S6 The corresponding R^2 of top-3 algorithms to predict overpotentials of LDHs without related measurement conditions.

Methods	Hyperparameters
Artificial Neural Network	-
Random Forest Regression	n_estimators = [5, 10, 20, 50, 70, 100]
-	max_depth = [5, 6, 7, 9, 10, 20]
	max features = $[0.6, 0.7, 1]$
XGBoost Regression	n estimators = [5, 10, 20, 30, 50, 100, 200]
J. J	learning rate = $[0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9]$
	$max donth = \begin{bmatrix} 1 & 2 & 5 & 6 & 7 & 9 \end{bmatrix}$
	$\max_{i=1}^{n} \max_{j=1}^{n} \max_{i=1}^{n} \max_{i$
	max_delta_step = [0.1, 0.3, 0.5, 1, 3, 5, 7]
Kneighbors Regression	-
Extra Trac Pagrassian	$n_{\rm optimators} = [10, 20, 20, 50, 100]$
	$n_{estimators} = [10, 20, 30, 30, 100]$
	max_deptn = [5, 6, 7, 8, 9]
Support Vector Regression	C = [0.1, 0.2, 0.3, 1, 2, 3, 10, 20]
	gamma = [1, 0.1, 0.01, 0.001]
Gradient Boost Regression	n_estimators = [5, 10, 20, 30, 50, 100, 150, 200, 2
-	max_depth = [1, 3, 5, 7, 9, 11, 13]
	learning rate = $[0, 1, 0, 3, 0, 5, 0, 7, 0, 9]$
	earning_rate = [0.1, 0.3, 0.3, 0.7, 0.3]
Kernel Ridge Regression	alpha = [0.1, 0.3, 0.5, 0.7, 0.9, 1]
Stochastic Gradient Descent Regression	<u>-</u>
Adaboost Regression	n_estimators = [5, 10, 20, 30, 50, 100, 200]
	learning_rate = [0.1, 0.3, 0.5, 0.7, 0.9]
Bayesian Ridge Regression	-
Pidgo Pogrossion	a = [0, 1, 0, 2, 0, 2, 0, 4, 0, 5, 1, 1, 5, 2, 2, 5]
עומצב עבצו ביצוטוו	αιμια – [υ.τ, υ.2, υ.ວ, υ.4, υ.ວ, τ, τ.ວ, 2, 2.ວ]
Gaussian Process Regression	<u>-</u>
-	
Bagging Regression	-

Table S1 The key hyperparameters of each model used for grid search (hyperparameters not mentioned were kept at their default values).

Table S2 The details of layer double hydroxides for dataset construction in different publications.

entry	Chemical	Exfoliation	morphology	support	electrode	Start/Max		Potential1	Experimental	Doi
	composition					scan rate			Log C _{dl} (mF.cm ⁻²)	
1	Ni _{0.500} Fe _{0.500}	0	nanosheets	0	glassy carbon	10	50	1.1504	0.022799405	10.1016/j.matlet.2021.131470
2	Ni _{0.667} Fe _{0.333}	0	nanosheets	0	glassy carbon	10	50	1.1504	0.027064062	10.1016/j.matlet.2021.131470
3	Ni _{0.750} Fe _{0.250}	0	nanosheets	0	glassy carbon	10	50	1.1504	0.023951707	10.1016/j.matlet.2021.131470
4	Ni _{0.667} Fe _{0.222} Cr _{0.111}	0	nanoplates	0	glassy carbon	20	120	0.25	0.143951116	10.1002/aenm.201703189
5	Ni _{0.667} Cr _{0.333}	0	nanoplates	0	glassy carbon	20	120	0.25	0.164055292	10.1002/aenm.201703189
6	Ni _{0.750} Fe _{0.250}	0	nanoplates	0	glassy carbon	20	120	0.25	0.147057671	10.1002/aenm.201703189
7	Ni _{0.667} Fe _{0.111} Cr _{0.222}	0	nanoplates	0	glassy carbon	20	120	0.25	0.146128036	10.1002/aenm.201703189
8	Ni _{0.667} Fe _{0.167} Cr _{0.167}	0	nanoplates	0	glassy carbon	20	120	0.25	0.124178055	10.1002/aenm.201703189
9	Ni _{0.667} Fe _{0.222} Cr _{0.111}	0	nanoplates	0	carbon paper	20	120	0.25	0.143951116	10.1002/aenm.201703189
10	Ni _{0.333} Mn _{0.667}	0	nanosheets	1	glassy carbon	20	120	0.71	0.016197354	10.1021/acsnano.9b07487
11	Ni _{0.500} Fe _{0.500}	0	unknown	1	glassy carbon	10	100	0.95	0.07773118	10.1021/acsami.2c06210
12	Ni _{0.571} Fe _{0.143} Co _{0.286}	0	nanosheets	0	Ni foam	10	80	1.124	0.954242509	10.1016/j.electacta.2019.06.019
13	Ni _{0.565} Fe _{0.435}	1	nanosheets	0	glassy carbon	5	50	0.8875	0.627365857	10.1016/j.ultsonch.2021.105664
14	Ni _{0.500} Fe _{0.333} Al _{0.167}	0	nanosheets	0	Ni foam	5	50	1.225	0.874481818	10.1016/j.ijhydene.2019.09.155
15	Ni _{0.500} Fe _{0.500}	0	nanosheets	0	Ni foam	5	50	1.225	0.834420704	10.1016/j.ijhydene.2019.09.155
16	Ni _{0.800} Fe _{0.200}	0	nanosheets	0	Ni foam	5	200	1.0504	0.419955748	10.1149/1945-7111/ab72ee
17	Co _{0.750} Cr _{0.250}	0	nanosheets	1	glassy carbon	10	80	1.0504	1.851258349	"10.1021/acsanm.2c00047AC
18	Ni _{0.683} Fe _{0.194} Al _{0.123}	0	nanoplates	0	Ni foam	20	100	0.67	1.404833717	10.1002/cnma.202100508
19	Ni _{0.623} Co0. ₃₆₂ Ir _{0.0154}	0	nanosheets	0	Ni foam	20	160	0.1	0.963787827	10.1039/d0ta03272g
20	Co	0	nanosheets	0	glassy carbon	2	12	1.2725	1.274157849	10.1039/c7ta10351d
21	Ni _{0.750} Fe _{0.125} V _{0.125}	0	nanosheets	0	Ni foam	2	12	1.2504	2.104487111	10.1002/smll.201703257
22	Co _{0.500} Fe _{0.500}	1	nanosheets	0	Ni foam	2	10	1.2	1.103803721	10.1002/adma.201701546
23	Co _{0.500} Fe _{0.500}	1	nanosheets	0	glassy carbon	2	10	1.2	1.103803721	10.1002/adma.201701546
24	Ni _{0.750} V _{0.250}	1	nanosheets	0	Ni foam	20	120	1.25	0.054995862	10.1038/ncomms11981
25	Ni _{0.750} Fe _{0.125} V _{0.125}	0	nanosheets	0	Ni foam	2	12	1.2504	2.104487111	10.1002/smll.201703257
26	Ni _{0.187} V _{0.748} Ru _{0.0650}	0	nanosheets	0	Ni foam	10	200	0.25	1.558708571	10.1038/s41467-019-11765-x
27	Ni _{0.193} V _{0.770} Ir _{0.0370}	0	nanosheets	0	Ni foam	10	200	0.25	1.301029996	10.1038/s41467-019-11765-x
28	Ni _{0.767} Fe _{0.106} V _{0.127}	0	nanosheets	0	Ni foam	1	5	1.0674	0.874075745	10.1002/aenm.201703341
29	Ni _{0.600} Fe _{0.350} Ce _{0.050}	0	nanosheets	1	glassy carbon	50	250	1.1004	0.716003344	10.1021/acsami.7b17939
30	Ni	0	nanosheets	0	Ni foam	10	100	0.15	1.857332496	10.1021/acsami.6b11023
31	Ni _{0.500} Fe _{0.500}	0	nanosheets	1	copper foam	10	100	1.075	1.783903579	10.1039/c7ee01571b
32	Ni _{0.678} Fe _{0.315} Pt _{0.00700}	0	nanoplates	0	carbon cloth	30	180	1.12	1.145507171	10.1016/j.nanoen.2017.06.027
33	Ni _{0.731} Fe _{0.269}	1	nanosheets	0	Ni foam	10	200	1.13	0.908485019	10.1021/acsami.1c19536
34	Ce _{0.600} Ni _{0.400}	0	nanosheets	1	Ni foam	10	40	1.36	2.586812269	10.1039/d1qm00132a
35	Ce _{0.600} Ni _{0.400}	0	nanosheets	0	Ni foam	10	40	1.36	2.408409578	10.1039/d1qm00132a
36	Ce _{0.100} Ni _{0.900}	0	nanosheets	1	Ni foam	10	40	1.36	2.162265614	10.1039/d1qm00132a
37	Ce _{0.100} Ni _{0.900}	0	nanosheets	0	Ni foam	10	40	1.36	1.925312091	10.1039/d1qm00132a
38	Ce _{0.200} Ni _{0.800}	0	nanosheets	1	Ni foam	10	40	1.36	2.193402903	10.1039/d1qm00132a

39	Ce _{0.200} Ni _{0.800}	0	nanosheets	0	Ni foam	10	40	1.36	1.710963119	10.1039/d1qm00132a
40	Ce _{0.400} Ni _{0.600}	0	nanosheets	1	Ni foam	10	40	1.36	2.153814864	10.1039/d1qm00132a
41	Ce _{0.400} Ni _{0.600}	0	nanosheets	0	Ni foam	10	40	1.36	2.007747778	10.1039/d1qm00132a
42	Ce _{0.800} Ni _{0.200}	0	nanosheets	1	Ni foam	10	40	1.36	2.002597981	10.1039/d1qm00132a
43	Ce _{0.800} Ni _{0.200}	0	nanosheets	0	Ni foam	10	40	1.36	1.98811284	10.1039/d1qm00132a
44	Ce _{0.900} Ni _{0.100}	0	nanosheets	1	Ni foam	10	40	1.36	2.036229544	10.1039/d1qm00132a
45	Ce _{0.900} Ni _{0.100}	0	nanosheets	0	Ni foam	10	40	1.36	1.998259338	10.1039/d1qm00132a
46	Ce	0	nanosheets	0	Ni foam	10	40	1.36	1.655138435	10.1039/d1qm00132a
47	Ni	0	nanosheets	0	Ni foam	20	100	0.96	1.555094449	10.1039/d1qm00132a
48	Fe _{0.240} Co _{0.259} Ni _{0.500}	0	nanosheets	0	carbon paper	20	100	0.96	0.67669361	10.1007/s11664-022-09805-2
49	Ni _{0.725} Fe _{0.267} V _{0.00840}	0	nanosheets	0	glassy carbon	25	200	1.25	0.301029996	10.1016/j.jallcom.2021.160929
50	Ni _{0.674} Fe _{0.322} V _{0.00420}	0	nanosheets	0	glassy carbon	25	200	1.25	0.281033367	10.1016/j.jallcom.2021.160929
51	Ni _{0.761} Fe _{0.222} V _{0.0178}	0	nanosheets	0	glassy carbon	25	200	1.25	0.195899652	10.1016/j.jallcom.2021.160929
52	Ni _{0.702} Fe _{0.275} V _{0.0226}	0	nanosheets	0	glassy carbon	25	200	1.25	0.178113252	10.1016/j.jallcom.2021.160929
53	Ni _{0.547} Fe _{0.453}	0	nanosheets	0	glassy carbon	25	200	1.25	0.152288344	10.1016/j.jallcom.2021.160929
54	Co _{0.606} Mo _{0.394}	0	nanosheets	0	glassy carbon	10	100	1	0.061377074	10.1016/j.apsusc.2021.149072
55	Co _{0.201} Mo _{0.799}	0	nanosheets	0	glassy carbon	10	100	1	0.008472419	10.1016/j.apsusc.2021.149072
56	Co _{0.392} Mo _{0.608}	0	nanosheets	0	glassy carbon	10	100	1	0.029708363	10.1016/j.apsusc.2021.149072
57	Co _{0.792} Mo _{0.208}	0	nanosheets	0	glassy carbon	10	100	1	0.009748256	10.1016/j.apsusc.2021.149072
58	Ni _{0.571} Co _{0.286} Fe _{0.143}	0	nanosheets	0	Ni foam	10	80	1.124	0.954242509	10.1016/j.electacta.2019.06.019.
59	Ni _{0.500} Co _{0.250} Fe _{0.250}	0	nanosheets	0	Ni foam	10	80	1.124	0.740362689	10.1016/j.electacta.2019.06.019.
60	Ni _{0.703} Co _{0.270} Fe _{0.0270}	0	nanosheets	0	Ni foam	10	80	1.124	0.84509804	10.1016/j.electacta.2019.06.019.
61	Ni _{0.500} Co _{0.500}	0	nanosheets	0	Ni foam	10	80	1.124	0.602059991	10.1016/j.electacta.2019.06.019.
62	Ni _{0.278} Fe _{0.722}	0	nanosheets	1	copper foil	10	100	0.975	1.793790385	10.1021/acsami.8b03345
63	Ni _{0.750} Mn _{0.250}	0	nanosheets	1	glassy carbon	5	100	0.96	0.14082218	10.1039/d2ma00302c
64	Ni _{0.750} Mn _{0.250}	0	nanosheets	1	glassy carbon	5	100	0.96	0.154119526	10.1039/d2ma00302c
65	Ni _{0.755} Mn _{0.245}	0	nanosheets	1	glassy carbon	5	100	0.96	0.082426301	10.1039/d2ma00302c
66	Ni _{0.750} Mn _{0.250}	0	nanosheets	1	glassy carbon	5	100	0.96	0.015359755	10.1039/d2ma00302c
67	Ni _{0.737} Fe _{0.263}	0	nanosheets	0	Ni foam	10	50	1.28	1.022428371	10.1007/s12274-021-3475-z
68	Ni _{0.730} Fe _{0.270}	0	nanosheets	0	Ni foam	10	50	1.28	0.719331287	10.1007/s12274-021-3475-z
69	Ni _{0.744} Fe _{0.256}	0	nanosheets	0	Ni foam	10	50	1.28	0.924279286	10.1007/s12274-021-3475-z
70	Co _{0.780} Fe _{0.220}	0	nanosheets	0	carbon paper	20	100	1.025	0.067070856	10.1039/c9nr08795h
71	Co _{0.609} Fe _{0.391}	0	nanosheets	0	carbon paper	20	100	1.025	0.084933575	10.1039/c9nr08795h
72	$Co_{0.562}Fe_{0.342}V_{0.0960}$	0	nanosheets	0	carbon paper	20	100	1.025	0.090963077	10.1039/c9nr08795h
73	$Co_{0.685}Fe_{0.152}V_{0.163}$	0	nanosheets	0	carbon paper	20	100	1.025	0.14176323	10.1039/c9nr08795h
74	Co _{0.628} Fe _{0.102} V _{0.270}	0	nanosheets	0	carbon paper	20	100	1.025	0.102433706	10.1039/c9nr08795h
75	Co _{0.602} V _{0.398}	0	nanosheets	0	carbon paper	20	100	1.025	0.054995862	10.1039/c9nr08795h
76	Fe _{0.202} Co _{0.798}	0	nanosheets	1	glassy carbon	10	60	1.215	0.472756449	10.1002/cnma.201900613
77	Mn _{0.0412} Co _{0.959}	0	nanosheets	1	glassy carbon	1	9	0.25	0.959041392	10.3390/catal8090350
78	Со	0	nanosheets	0	glassy carbon	10	50	1.21	1.619406411	10.1016/j.chemphys.2020.111011
79	Со	0	nanosheets	1	glassy carbon	10	50	1.21	0.850646235	10.1016/j.chemphys.2020.111011
80	Со	0	nanosheets	1	glassy carbon	10	50	1.21	0.971275849	10.1016/j.chemphys.2020.111011

81	Со	0	nanosheets	1	glassy carbon	10	50	1.21	1.3818368	10.1016/j.chemphys.2020.111011
82	Ni _{0.632} Fe _{0.368}	0	nanosheets	0	carbon cloth	10	100	1.04376	0.654176542	10.1016/j.mtener.2021.100883
83	Ni _{0.500} Fe _{0.500}	0	nanoflakes	1	glassy carbon	20	140	1	0.650307523	10.1016/j.jssc.2018.03.017
84	Ni _{0.714} Fe _{0.286}	0	nanoplates	1	glassy carbon	5	50	1.2	0.240549248	10.1016/j.nanoen.2017.12.003
85	Co _{0.750} Fe _{0.250}	0	nanosheets	0	glassy carbon	20	120	1.2	1.392696953	10.1016/j.mseb.2022.115800
86	Co _{0.800} Fe _{0.200}	0	nanosheets	0	glassy carbon	20	120	1.2	0.832508913	10.1016/j.mseb.2022.115800
87	Co _{0.667} Fe _{0.333}	0	nanosheets	0	glassy carbon	20	120	1.2	1.274157849	10.1016/j.mseb.2022.115800
88	Ni _{0.662} Co _{0.338}	1	nanosheets	0	carbon fiber paper	1	5	1.22	0.553883027	10.1021/acsaem.8b01717
89	Ni _{0.750} Fe _{0.250}	1	nanosheets	1	glassy carbon	20	160	1.25	0.382017043	10.1016/j.clay.2021.106360
90	Co _{0.333} Ni _{0.333} Al _{0.333}	0	nanoplates	1	Ni foam	5	60	1.17	1.376576957	10.1016/j.electacta.2019.03.210
91	Ni _{0.5} Co _{0.5}	1	nanosheets	0	glassy carbon	10	100	0.97	0.733197265	10.1016/j.susmat.2020.e00170
92	Ni _{0.5} Co _{0.5}	0	nanosheets	0	glassy carbon	10	100	0.97	0.683947131	10.1016/j.susmat.2020.e00170
93	Ni _{0.5} Co _{0.5}	1	nanoparticles	0	glassy carbon	10	100	0.97	0.565847819	10.1016/j.susmat.2020.e00170
94	Mn _{0.200} Co _{0.800}	0	nanosheets	0	Ni foam	20	150	1.17	1.158362492	10.1016/j.apsusc.2020.148305
95	Mn _{0.500} Co _{0.500}	0	nanosheets	0	Ni foam	20	150	1.17	0.763427994	10.1016/j.apsusc.2020.148305
96	Mn _{0.800} Co _{0.200}	0	nanosheets	0	Ni foam	20	150	1.17	0.698970004	10.1016/j.apsusc.2020.148305
97	Mn	0	nanosheets	0	Ni foam	20	150	1.17	0.672097858	10.1016/j.apsusc.2020.148305
98	Ni _{0.500} Fe _{0.500}	0	nanosheets	1	glassy carbon	10	100	1.08976	0.862727528	10.1016/j.cej.2021.128879
99	Ni _{0.800} Fe _{0.200}	0	nanoplates	0	Ni foam	10	100	1.2	0.001084381	10.1002/ente.202100688
100	Co _{0.270} Ni _{0.0300} Fe _{0.700}	0	nanoplates	0	Ni foam	10	100	1.2	0.004837061	10.1002/ente.202100688
101	Co _{0.550} Ni _{0.0100} Fe _{0.440}	0	nanoplates	0	Ni foam	10	100	1.2	0.016782712	10.1002/ente.202100688
102	Co _{0.720} Ni _{0.0700} Fe _{0.210}	0	nanoplates	0	Ni foam	10	100	1.2	0.027390385	10.1002/ente.202100688
103	Co _{0.860} Ni _{0.0700} Fe _{0.0700}	0	nanoplates	0	Ni foam	10	100	1.2	0.06870522	10.1002/ente.202100688
104	Co _{0.750} Fe _{0.250}	0	nanosheets	0	glassy carbon	0	150	1.1	0.72427587	doi.org/10.1007/s12274-017-1806-x
105	Ni _{0.749} Fe _{0.251}	0	others	0	Ni foam	1	5	0.025	0.555094449	https://doi.org/10.1007/s40843-017-9214-9
106	Ni _{0.980} Mg _{0.0196}	0	nanosheets	0	glassy carbon	20	100	1.27	0.170261715	10.1039/c8ta04615h
107	Ni _{0.750} Fe _{0.250}	0	nanoparticles	1	glassy carbon	20	120	0.175	0.004407364	10.1016/j.matlet.2021.129517
108	Ni _{0.735} Fe _{0.221} Mn _{0.0441}	0	nanosheets	1	glassy carbon	20	180	1.2	0.826074803	https://doi.org/10.1007/s40843-021-1678-y
109	Ni _{0.750} Mn _{0.250}	0	nanosheets	0	glassy carbon	10	50	1.05	0.006151439	10.1021/acsnano.1c05250
110	Со	0	nanosheets	1	carbon cloth	10	100	1.225	1.465382851	10.1002/advs.202002631
111	Ni _{0.761} Fe _{0.205} Mn _{0.0341}	0	nanosheets	0	glassy carbon	5	30	1.1454	0.224274014	10.1002/smll.202202403
112	Ni ₂ Fe	0	nanosheets	1	Ni foam	20	150	0.974	0.925312091	10.1002/adfm.202200951
113	Ni _{0.668} Fe _{0.161} Co _{0.171}	0	nanosheets	0	carbon cloth	20	100	1.07	1.069298012	10.1039/d1ta11055a
114	$Ni_{0.562}Co_{0.431}Te_{0.00720}$	0	nanosheets	0	Ni foam	5	100	1	0.908485019	10.1039/d1ma00688f
115	Ni _{0.721} V _{0.183} Ru _{0.0962}	0	nanosheets	0	carbon cloth	30	120	1.0504	0.000061665	10.1039/d1ta09627c
116	Ni _{0.722} Fe _{0.278}	0	unknown	0	carbon fiber paper	10	100	1.2504	0.075331586	10.1002/cey2.215
117	Ni _{0.750} Fe _{0.250}	1	nanosheets	1	glassy carbon	20	120	0	2.636487896	10.1002/adma.202110552
118	Co _{0.485} Ni _{0.515}	0	nanosheets	1	others	20	120	1.19	1.767304317	10.1080/21663831.2022.2095235
119	Ni _{0.500} Fe _{0.500}	0	nanosheets	1	Ni foam	10	200	0.08	1.25791845	10.1016/j.apsusc.2022.154287
120	Ni _{0.500} Co _{0.500}	0	nanosheets	1	Ni foam	20	100	1.3	1.81756537	10.1016/j.jpowsour.2020.228354

121	Ni _{0.800} Fe _{0.200}	0	nanosheets	0	others	2	10	0.77	0.665580991	10.1016/j.catcom.2022.106425
122	Ni _{0.817} Fe _{0.183}	0	nanosheets	1	Ni foam	20	100	1.02	0.678518379	10.1016/j.cej.2022.136105
123	Fe _{0.375} Co _{0.625}	0	unknown	1	Ni foam	20	120	1.025	1.310055738	10.1016/j.cej.2021.133941
124	Ni _{0.500} Fe _{0.500}	0	nanosheets	1	Ni foam	20	120	1.12	0.141449773	10.1016/j.jallcom.2021.163510
125	Fe _{0.472} Co _{0.528}	0	nanosheets	1	Ni foam	20	100	0.875	1.941014244	10.1016/j.apcatb.2022.121221
126	N _{i0.753} Fe _{0.247}	0	nanosheets	1	glassy carbon	10	50	1.05	0.000112902	10.1016/j.jallcom.2021.162393
127	Ni _{0.667} Co _{0.333}	0	nanoflakes	1	Ni foam	10	50	1.22	1.450249108	10.1016/j.jallcom.2021.163259
128	Ni _{0.551} Fe _{0.449}	0	nanosheets	0	glassy carbon	5	25	1.396	0.26278321	10.1002/anie.201710877
129	Ni _{0.046} Fe _{0.954}	0	others	0	glassy carbon	5	25	1.396	0.051268319	10.1002/anie.201710877

Table S3 The details of layer double hydroxides in corresponding publications ^a.

entry	Chemical	Exfoliation	morphology	support	electrode	Start	Max	Potential1	Predicted Log	Experimental Log	Ref.
	composition					scan rate	scan rate		C _{dl} (mF.cm ⁻²) ^b	C _{dl} (mF.cm ⁻²) ^c	
Exp. 1	Ni _{0.755} Mn _{0.245}	0	nanosheets	1	Ni foam	5	100	0.96	0.1042	0.08243	1
Exp. 2	Со	0	nanosheets	1	Ni foam	10	50	1.21	1.361	1.382	2
Exp. 3	NiCe	0	nanosheets	1	Others	10	100	1.075	1.828	1.784	3

^a All features should be transferred into Binary Representation first before fitted in machine learning model.

 $^{\rm b}$ Predictions Log $C_{\rm dl}$ are based on an artificial neural network algorithm trained before.

 $^{\rm c}$ Experimental Log C_{dl} were extracted from publications directly.

Table S4 The details of layer double hydroxides for overpotentials prediction.

entry	Chemical	Scan rate ^a	iR-correlation	Experimental Log	Ref.		
	composition			Overpotential (mV)			
1	Ni _{0.722} Fe _{0.278}	5	1	2.338456494	4		
2	Go _{0.794} Ga _{0.206}	5	1	2.413299764	5		
3	Ni _{0.750} Fe _{0.250}	10	0	2.29666519	6		
4	Ni _{0.869} Fe _{0.131}	5	0.85	2.396199347	7		
5	Со	5	0	2.432969291	8		
6	Ni _{0.694} Fe _{0.306}	5	0.95	2.149219113	9		
7	Ni _{0.747} V _{0.253}	2	0	2.281033367	10		
8	Ni _{0.750} Fe _{0.250}	2	0	2.064457989	11		
^a Scan ra	^a Scan rate was extracted from linear sweep voltammetry (LSV) experiments.						

Table S5 Summary of features for ML construction to predict $C_{dl}\, \text{or overpotentials of layer double}$

hydroxides.

ML model	Features
C _{dl} prediction	Chemical compositions (Atom number, Electronegativity, Mole ratio), Catalyst
	morphology (Morphology, Exfoliation), Support, Electrode, Testing conditions
	(Starting scan rate, Maximum scan rate, Testing potential)
Overpotentials prediction	Chemical compositions (Atom number, Electronegativity, Mole ratio), Catalyst
	morphology (Morphology, Exfoliation), Support, Electrode, Testing conditions (Scan
	rate, iR-correlation)

Reference:

- 1. Y. Liu, L. Bai, T. Li, H. Liu, X. Wang, L. Zhang, X. Hao, C. He and S. Guo, Materials Advances, 2022, **3**, 4359-4368.
- 2. W. Li, Y. Jiang, M. Yang, M. Qu, Y. Li, W. Shen, R. He and M. Li, Chemical Physics, 2021, 541, 111011.
- 3. L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen and Z. Ren, *Energy & Environmental Science*, 2017, **10**, 1820-1827.
- Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan, X. Liu and R. Ma, Carbon Energy, 2022, 4, 901-913. 4.
- 5. J. Zhang, C. Dong, Z. Wang, H. Gao, J. Niu, Z. Peng and Z. Zhang, Small Methods, 2019, 3, 1800286.
- H. Zhang, H. Li, B. Akram and X. Wang, *Nano Research*, 2019, **12**, 1327-1331.
 Z. Xu, Y. Ying, G. Zhang, K. Li, Y. Liu, N. Fu, X. Guo, F. Yu and H. Huang, *Journal of Materials* Chemistry A, 2020, 8, 26130-26138.
- 8. X.-Z. Song, N. Zhang, F. Liu, Z.-H. Wang, W.-Y. Zhu, G.-Z. Zhang, Z.-Y. Niu, X.-F. Wang and Z. Tan, *Journal of Alloys and Compounds*, 2021, **873**, 159766. 9. X. Meng, J. Han, L. Lu, G. Qiu, Z. L. Wang and C. Sun, Small, 2019, **15**, e1902551.
- 10. Q. Liu, J. Huang, Y. Zhao, L. Cao, K. Li, N. Zhang, D. Yang, L. Feng and L. Feng, Nanoscale, 2019, 11, 8855-8863.
- 11. L. Li, Y. Dai, Q. Xu, B. Zhang, F. Zhang, Y. You, D. Ma, S.-S. Li and Y.-X. Zhang, Journal of Alloys and Compounds, 2021, 882, 160752.