Less is More: A Perspective on Thinning Lithium Metal Towards High-Energy-Density Rechargeable Lithium Batteries

Wangyan Wu,^{1,2} Wei Luo^{1,2*} and Yunhui Huang^{3*}

¹Institute of New Energy for Vehicles, Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;

²Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

³State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Email: weiluo@tongji.edu.cn and huangyh@hust.edu.cn

Table of Contents

Table S1 The definition of Li foils' thickness in previous literatures

Table S2 Thin Li fabrication techniques and their corresponding details

Note 1 The correspondence of a Li metal anode thickness and its areal capacity

Note 2 The correlation between cycle life and the thickness of LMAs and corresponding CE_{avg} of a battery

The thickness of Li foils/µm	The description/definition	Reference
(the areal capacity of used Li)	of the thickness of Li foils	
400 (80 mAh/cm ²)	thick	J. Phys. Chem. C, 2018, 122, 21462–21467
10 (2 mAh/cm ²)	thin	
100 or 50	thick	Nat. Energy, 2021, 6, 723-732
20	thin/ultrathin	
125	thick	Chem. Commun., 2015, 51, 17100
30	thin	
50	ultrathin	Adv. Mater. 2019, 31, 1902785; Energy Environ. Mater. 2020, 3, 160– 165
30	very thin	Batteries & Supercaps 2020, 3, 1370–1376
< 50	thin	Proc. Natl. Acad. Sci. U.S.A., 2020, 117, 27195-27203
10-20	ultrathin	Nat. Commun., 2019, 10, 4930
> 100	thick	ACS Appl. Mater. Interfaces, 2018, 10, 16521–16530
40	thin	
20	ultrathin	Adv. Energy Mater., 2021, 11, 2003769
0.5 - 20	ultrathin	Nat. Energy, 2021, 6, 790-798
50 - 100	very thick	Nano Lett., 2022, 22, 3047-3053
< 15	ultrathin	
10 - 50	ultrathin	Adv. Energy Mater., 2021, 11, 2102259
1 - 30	ultrathin	Chem. Eng. J. Adv., 2022, 9 100218
15	ultrathin	Adv. Mater., 2021, 2005305
< 30	ultrathin	Nano Energy, 2020, 74, 104817

Table S1 The definition of Li foils' thickness in previous literatures

Table S2 Thin Li fabrication techniques and their corresponding details

This is presented as an independent table in the supplementary information.

Note 1 The correspondence of a Li metal anode thickness and its areal capacity

As we know, metallic Li at normal temperature (20 °C) and pressure (101.325 kPa) possesses a density (ρ) of 0.534 g/cm³, and a theoretical gravimetric capacity of ~ 3860 mAh/g. Accordingly, we can obtain the theoretical volumetric capacity of 2061.24 mAh/cm³. Thus, an areal capacity of ~ 1 mAh/cm² corresponds to a thickness of 1/2061.24 cm, namely 4.85 µm. Here, for the convenience of memory, we say 5 µm is equivalent to ~ 1 mAh/cm².

Note 2 The correlation between cycle life and the thickness of LMAs and corresponding CE_{avg} of a battery

Here, we assume a battery consists of an Li metal anode of various thickness and a Licontaining cathode with an areal capacity of 4 mAh/cm². First, we assume charging to 100% state-of-charge, and the possible Li loss occurs only at the Li metal anode side. In this case, the capacity passed per cycle ($Q_{Li passed per cycle}$) is equivalent to the cathode capacity ($Q_{cathode}$, namely 4 mAh/cm²) if there are extra Li in anode side to compensate for Li losses. We define the battery reaching its end when it runs out all of the Li from the Li-metal anode (Q_{Li}) and 20% of the Li from the cathode ($Q_{cathode}$) after *n* cycles. Then we can calculate the averaged Coulombic efficiency (CE_{avg}) for Li plating/stripping processes on the anode side as follows:

$$CE_{avg} = 1 - \left(\frac{Q_{Li} + 0.2Q_{cathode}}{n}\right) \times \left(\frac{1}{Q_{Li \, passed \, per \, cycle}}\right) = 1 - \frac{Q_{Li} + 0.2Q_{cathode}}{nQ_{cathode}}$$

Among which, the term $(Q_{Li} + 0.2Q_{cathode})/n$ represents the average Li loss per cycle. On this basis, we then define the fraction of Li passed per cycle (F_p) as follows:

$$F_p = \frac{Q_{cathode}}{Q_{cathode} + Q_{Li}}$$

Combining the above two equation, we can get a relation between (F_p) and cycle life (*n*), namely

$$F_p = \frac{1}{n(1 - CE_{avg}) + 0.8}$$

Based on this equation, we can calculate the cycle life of Li meta batteries with anodes of different thickness. For example, when we have a 50 μ m Li metal anode (5 μ m is

almost equivalent to 1 mAh/cm²) and a CE_{avg} of 80%, then we can get a F_p value of 4/14 and a cycle life of 13.5.

For more detailed process, please refer to the article of Zhu et al (*Proc. Natl. Acad. Sci. U.S.A.*, 2020, 117, 27195-27203).