EDTA derived Graphene supported Porous Cobalt Hexacyanoferrate nanospheres as a highly electroactive nanocomposite for Hydrogen Peroxide sensing

Ramu Banavath ^{a, b,*}, Rohit Srivastava ^b, Parag Bhargava ^{a*}

a-Department of Metallurgical and Materials Science, Indian Institute of Technology-Bombay, Mumbai, India, 400076

b-Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India, 400076

*Corresponding author.

E-mail address:<u>ramubanavath@iitb.ac.in</u> (Ramu Banavath), <u>pbhargava@iitb.ac.in</u> (Parag Bhargava) Mailing address: IIT Bombay, Powai, Maharashtra, India, 400076

Figure S 1: - (a) FEG-SEM image of Natural Graphite, (b) FEG-SEM image of exfoliated graphene, (c, d) FEG-TEM images of exfoliated graphene.

Figure S 2: - (a) X-ray diffractometry spectra comparison of exfoliated graphene with natural graphite, (b, c) Raman spectroscopy of exfoliated graphene and its comparison with natural graphite.

Figure S 3: - FEG-SEM images of P-CoHCF-NSPs and Gr/P-CoHCF-NSPs composites prepared at different concentrations of exfoliated graphene.

Figure S 4: - XRD peaks intensity comparison for Pristine P-CoHCF-NSPs and Gr/P-CoHCF-NSPs composite.

Figure S 5: - (a, a_HR, a_D) TEM images of of P-CoHCF-NSPs, and (b, b_HR, b_D) TEM images of Gr/P-CoHCF-NSPs composite.

Figure S 6: - EDS spectra of Gr/P-CoHCF-NSPs found from HAADF-STEM elemental mapping.

Figure S 7: - EDS of pristine P-CoHCF-NSPs and Gr/P-CoHCF-NSPs composite prepared with 400 mg graphene.

Figure S 8: - XPS wide spectrums for pristine P-CoHCF-NSPs (a), and Gr/P-CoHCF-NSPs based composite.

Figure S 9: - (a) XPS spectra of exfoliated graphene, (b, c, d, e) High-resolution XPS spectra of Fe, Co, C, and N of pristine P-CoHCF-NSPs.

Smart Inst	ruments Co P Ltd	(a) Sma	Smart Instruments Co P Ltd (b)		
Surface Area Analyser	Model: Smart Sorb 92/93	Surface Area Analyser	Model: Sn	nart Sorb 92/93	
From Smart Instruments Co.Pvt.I	.td WebSite: www.smartinstrum	ent.com From Smart Instruments	Co.Pvt.Ltd WebSite: v	vww.smartinstrument.com	
% of N2 :29.97 Sample Name : 0.01 CoHCF	Room temp in Deg C:24	% of N2 :29.97 Sample Name : HS-W-CoH	Room temp	.in Deg.C:24	
Wt of Tube (gms) :21.2477	Wt of Tube+Sample (gms) :21	.5601 Wt of Tube (gms) :23.1572	Wt of Tube	+Sample (gms) :23.1894	
Sample Wt (gms) :.3124	Sample Wt after Reg. (gms) :	Sample Wt (gms) :.0322	Sample Wt (gms) :.0322 Sample Wt after Reg. (gms) :.030		
Regeneration Temp.(deg.C): 80		Regeneration Term (deg C)	1. 80		
Time for regeneration (min.) :300		Time for regeneration (min.)) :130		
Desorption count : 32708.8 Injection count : 21230.9 Injected volume (cc) : 2.3		Desorption count : 5273.132 Injection count : 5607.266 Injected volume (cc) : 1.25			
Surface Area	a in (Sq.m/gm) : 32.20	Surfac	e Area in (Sq.m/gm) :	110.47	
Remarks:		Remarks:			
Graph For Sample : P-CoHCF	-NSPs	Graph For Sample	: Gr/P-CoHCF-NSPs cor	mposite	
Adsorb D	esorb Inject	Adsorb	Desorb	Inject	
Λ	\land				
			^	\wedge	

 $Figure \ S \ 10: \ - \ Specific \ {\rm surface} \ area \ of \ {\rm P-CoHCF-NSPs} \ and \ {\rm Gr/P-CoHCF-NSPs} \ composite \ calculated \ by \ single \ point \ {\rm BET} \ .$

Smart Instrum	ents Co P Ltd	Smart Instruments Co P Ltd (b)		
Pore Volume Analyser From Smart Instruments Co.Pvt.Ltd.	Model: Smart Sorb 92/93	Pore Volume Analyser From Smart Instruments Co.Pvt.Ltd.	Model: Smart Sorb 92/93 WebSite: www.smartinstrument.com	
% of N2 :29.97 Sample Name P-CoHCF-NSPs Wt of Tube (gms) :21.2477 Sample Wt (gms) :3124 Sample Loss : 2.9% Regeneration Temp. (deg. C) : 30 Time for regeneration (min.) :100	Room temp.in Deg.C.24 Wt of Tube+Sample (gms) :21.5601 Sample Wt after Reg. (gms) :.3033	% of N2:29.97 Sample Name: Gr/P-CoHCF-NSPs compose Wt of Tube (gms):23.1572 Sample Wt (gms):.0322 Sample Loss: 7.8% Regeneration Temp.(deg.C): 80 Time for regeneration (min.):260	P.oom temp.in Deg.C:24 site Wt of Tube+Sample (gms) :23.1894 Sample Wt after Reg. (gms) : .0297	
Desorption count : 9822.663 Injection count : 5353.053 Injected volume (cc) : 9.5		Desorption count : 1462.4 Injection count : 675.9814 Injected volume (cc) : 2.6		
Pore Volume in	(cc/gm) : 0.0244	Pore Volume in	(cc/gm) : 0.0803	
Remarks:		Remarks:		
Graph For Sample : P-CoHCF-N	SPs	Graph For Sample : Gr/P-CoHCF	-NSPs composite	
	Λ			

Figure S 11: - Pore volume of P-CoHCF-NSPs and Gr/P-CoHCF-NSPs composite calculated by single point BET .

Figure S 12: - All CV characterizations of 27 μl composite ink modified glassy carbon electrodes (a) CV comparison with pristine P-CoHCF-NSPs in 1 mM H₂O₂, (b) CV for different concentrations of H₂O₂, (c, d) CV can rate comparison of composite with P-CoHCF-NSPs in 1 mM H₂O₂ containing PBS.

Figure S 13: - CV of blank GCE in the presence of different concentrations of H2O2 at the SR of 25 mV/s.

Figure S 14: - Chronoamperometry of Gr/P-CoHCF-NSPs composite based H₂O₂ sensor for high concentrations of H₂O₂.

Figure S 15: - Amperometric plots for Interference study of Gr/P-CoHCF-NSPs composite based H₂O₂, (a) For common interfering ions, (b) For metal based interfering ions.

Electrode	Sensitivity (µA.mM ⁻¹ cm ⁻²)	LOD (µM)	Linear Range (mM)	Ref
ZnO ₃ -CuO ₇	1.11	2.4	0.003 - 0.53	[1]
MWCNTs/MnO ₂	13.9	6.97	0.1 - 20.7	[2]
AgNp@GNR	-	20	0.05 - 5	[3]
Black Berry Ag Nano	51.28	1.06	0.001 - 0.29	[4]
AuNPs/PB/GO	87.6	1.3	0.03 - 5.4	[5]
NiO/Carbon Foam	23.3	0.01	0.2 - 3.75	[6]
MoS2/Au-Pd	184	0.16	0.0008 - 10	[7]
Hollow CuO _x /NiO _y	271	0.9	0.0003 - 9	[8]
Au/Cu Nanostructures	133.74	10.93	0.05 - 10	[9]
PDA-CNT/Fe ₃ O ₄ Cs	316.27	6	0.006 - 2.057	[10]
C/V ₂ O ₅ Nanosheets	204.64	1.7	0.005 - 1.5	[11]
Meso-C/ZnO/GCE	464	6.25	50 - 981	[12]
Hollow Ni/NiO@C microspheres	32.09	0.9	- 80.7	[13]
Gr/P-CoHCF-NSPs/GCE	914	1.0	0.001 - 5.0	This work

 $\label{eq:source} \textbf{Table S1: -}Gr/P\text{-}CoHCF\text{-}NSPs \text{ based } H_2O_2 \text{ Sensor parameters with recently published work.}$

Concentration of H ₂ O ₂ (µM)	Output Current Density in PBS (µA.mm ⁻²)	Output Current Density in Lake water (µA.mm ⁻²)	Percentage of recovery (%)	% RCD
20	0.5111	0.5237	102.4	3.1
50	0.6763	0.6861	101.4	1.5
100	1.0999	1.0727	97.5	2.8
1000	6.6300	6.3775	96.2	3.9

Table S2: - Recovery study of fabricated Gr/P-CoHCF-NSPs composite based H₂O₂ sensor.

References: -

- S. Daemi, S. Ghasemi, A. Akbar Ashkarran, Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor, J. Colloid Interface Sci. 550 (2019) 180–189. https://doi.org/10.1016/j.jcis.2019.04.091.
- [2] M. Dinesh, C. Revathi, Y. Haldorai, R.T. Rajendra Kumar, Birnessite MnO2 decorated MWCNTs composite as a nonenzymatic hydrogen peroxide sensor, Chem. Phys. Lett. 731 (2019) 136612. https://doi.org/10.1016/j.cplett.2019.136612.
- [3] V. Stanković, S. Đurđić, M. Ognjanović, J. Mutić, K. Kalcher, D.M. Stanković, A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode, J. Electroanal. Chem. 876 (2020) 2–7. https://doi.org/10.1016/j.jelechem.2020.114487.
- [4] M.L.N. Thi, V.T. Pham, Q.B. Bui, P.H. Ai-Le, H.T. Nhac-Vu, Novel nanohybrid of blackberry-like gold structures deposited graphene as a free-standing sensor for effective hydrogen peroxide detection, J. Solid State Chem. 286 (2020). https://doi.org/10.1016/j.jssc.2020.121299.
- [5] X. Liu, X. Zhang, J. Zheng, One-pot fabrication of AuNPs-Prussian blue-Graphene oxide hybrid nanomaterials for nonenzymatic hydrogen peroxide electrochemical detection, Microchem. J. 160 (2021) 105595. https://doi.org/10.1016/j.microc.2020.105595.
- [6] M. Liu, M. An, J. Xu, T. Liu, L. Wang, Y. Liu, J. Zhang, Three-dimensional carbon foam supported NiO nanosheets as non-enzymatic electrochemical H2O2 sensors, Appl. Surf. Sci. 542 (2021) 148699. https://doi.org/10.1016/j.apsusc.2020.148699.
- [7] X. Li, X. Du, Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose, Sensors Actuators, B Chem. 239 (2017) 536–543. https://doi.org/10.1016/j.snb.2016.08.048.
- [8] L. Long, X. Liu, L. Chen, D. Li, J. Jia, A hollow CuOx/NiOy nanocomposite for amperometric and non-enzymatic sensing of glucose and hydrogen peroxide, Microchim. Acta. 186 (2019) 5–10. https://doi.org/10.1007/s00604-018-3183-x.
- [9] A. Ngamaroonchote, Y. Sanguansap, T. Wutikhun, K. Karn-orachai, Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide, Microchim. Acta. 187 (2020) 1–12. https://doi.org/10.1007/s00604-020-04542-x.
- [10] Y. Zhao, D. Huo, L. Jiang, S. Zhou, M. Yang, C. Hou, Synthesis of dopamine-derived N-doped carbon nanotubes/Fe3O4 composites as enhanced electrochemical sensing platforms for hydrogen peroxide detection, Microchim. Acta. 187 (2020). https://doi.org/10.1007/s00604-020-04575-2.
- [11] S. Chen, C. Wang, X. Lu, Fabrication of two-dimensional carbon/V2O3 composite nanosheets and their application for electrochemical sensing, Compos. Commun. 27 (2021) 100842. https://doi.org/10.1016/j.coco.2021.100842.
- [12] M.A. Rashed, M. Faisal, F.A. Harraz, M. Jalalah, M. Alsaiari, S.A. Alsareii, A Highly Efficient Nonenzymatic

Hydrogen Peroxide Electrochemical Sensor Using Mesoporous Carbon Doped ZnO Nanocomposite, J. Electrochem. Soc. 168 (2021) 027512. https://doi.org/10.1149/1945-7111/abe44b.

[13] X. Ma, K. lai Tang, M. Yang, W. Shi, W. Zhao, Metal–organic framework-derived yolk–shell hollow Ni/NiO@C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors, J. Mater. Sci. 56 (2021) 442– 456. https://doi.org/10.1007/s10853-020-05236-8.