Highly efficient synthesis of novel bio-based pentamethylene

dicarbamate via carbonylation of pentanediamine with ethyl carbamate

over well-defined titanium oxide catalyst

Xiang Hui ^{a,b,c}, Liguo Wang ^{a,b,c,e*}, Yan Cao ^a, Shuang Xu ^a, Peng He ^a, Huiquan Li ^{a,b,c,d}

^a Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

^b Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China

^c Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China

^d School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China

> ^e Dalian National Laboratory for Clean Energy, Dalian, 116023, China Corresponding Authors: lgwang@ipe.ac.cn

Table S1. Texture properties of TiO₂-101 and TiO₂-110

Entry	Catalysts	S ^{BET} /(m ² g ⁻¹)	Pore diameter /(nm)	Pore volume (cm ³ g ⁻¹)
1	TiO ₂ -101	6.76	25.60	0.039
2	TiO ₂ -110	70.91	10.80	0.25

Catalyst	Peak position	Quantity	Peak position	Quantity	Total acidity
Outaryst	(°C)	(µmol g ⁻¹)	(°C)	(µmol g ⁻¹)	(µmol g ⁻¹)
TiO ₂ -101	167	103.6	296	276.6	370
TiO ₂ -110	167	50.6	333	34.7	85

Table S3. Performance of different catalysts for the syntheses of carbamates

Entres	Catalanta	Product	Conversion of amines	Selectivity of amines	$TOF (g \cdot g^{-1}h^{-1})^{a}$	Reference
Entry Catalysts		(%)	(%)			
1	РЬО	MDC	100	83	6.86	8
2	PbO ₂	HDC	100	93	3.27	10
3	Ni/Fe ₃ O ₄	HDC	100	98	4.82	13
4	TiO ₂	PDC	100	>99	5.60	This work

^a TOF: g of carbamates per g of catalyst per hour

Table S4. The catalytic performances of various catalysts for the synthesis of PDC			
Catalyst	Conversion of PDA/ %	Yield of PDC/%	
ZSM-5	100	64	
HY	100	84	
TiO ₂	100	90	

Reaction conditions: molar ratio of ethanol, EC to PDA= 25:4:1, reaction temperature = $190 \text{ }^{\circ}\text{C}$, reaction time = 2 h.

Scheme S1. Possible pathways for the synthesis of PDC from PDA and EC

Fig. S1 The FT-IR spectrum of solid product

Fig. S2 GPC curve of intermediate

Fig. S3 FTIR spectra of ethanol, EC, and PDC

Fig. S4 Trends of formation for polyurea and PDC without catalyst in a real time concluded from FTIR spectra

Fig. S5 The FTIR spectrum of polyurea and three-dimensional surface monitoring of the formation of polyurea without catalyst

Figure S6. SEM (a) and TEM (b) images. XPS spectra of Ti 2p (c) and O 1p (d) for recycled catalyst