Supporting information

Facile preparation, catalytic performance and reaction mechanism of $Mn_xCo_{1-x}O_{\delta}/3DOM$ -m $Ti_{0.7}Si_{0.2}W_{0.1}O_y$ catalysts for the simultaneous removal of soot and NO_x

Lanyi Wang^a, Yu Ren^a, Xuehua Yu^{*b}, Di Yu^a, Chao Peng^b, Qiang Zhou^a, Jia Hou^a, Chengming Zhong^a, Chengyang Yin^b, Xiaoqiang Fan^b, Zhen Zhao ^{*a,b}, Kai Cheng^c, Yongsheng Chen^c, Zbigniew Sojka^d, Andrzej Kotarba^d, Yuechang Wei^a, Jian Liu^a

- ^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18# Fuxue Road, Chang Ping, Beijing 102249, China.
- ^b Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, China.
- ^c Energy and Catalysis Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China)
- ^d Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland

* Corresponding author: Zhen Zhao, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18# Fuxue Road, Chang Ping, Beijing 102249, China. Email: <u>zhenzhao@cup.edu.cn</u>; <u>zhaozhen1586@163.com</u>, Tel: +86-24-86579800.

^{*} Corresponding author: Xuehua Yu, Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, China. Email: yuxuehua1986@163.com; Tel: +86-24-82574216.

Includes 17 pages, 7 Figures, 5 Tables

CONTENTS

Table S1 Textural properties of as-prepared catalysts S5
Table S2 Performance of various catalysts for SCR reaction
Table S3 Performance of various catalysts for soot removal
Table S4 Performance of various catalysts for simultaneous removal of soot and NO_x
Table S5 The reaction rate (r) for NH ₃ -SCR/soot combustion and the amount of active oxygen species
(O _{amount}) for soot combustion
Fig. S1. CO_2 concentrations at 350 °C as a function of time over catalysts before and after O_2 is
removed from the reactant feed.
(Reaction conditions: (A) 1000 ppm NO, 1000 ppm NH ₃ , 5% O ₂ , 5% H ₂ O, balance N ₂ ,
flow rate = 150 ml min^{-1})
Fig. S2. X-ray diffraction patterns of $Mn_xCo_{1-x}O_{\delta}/3DOM$ -m TiSiWO catalysts with different x
values. (d: $Mn_{0.6}Co_{0.4}O_{\delta}/3DOM$ -m TiSiWO, e: $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO)S11
Fig. S3. Nitrogen adsorption-desorption isotherms of $Mn_xCo_{1-x}O_{\delta}/3DOM$ -m TiSiWO catalysts with
different x values
(a: 3DOM-m TiSiWO, b: MnO ₀ /3DOM-m TiSiWO, c: Mn _{0.8} Co _{0.2} O ₀ /3DOM-m TiSiWO,
d: $Mn_{0.6}Co_{0.4}O_{\delta}/3DOM$ -m TiSiWO, e: $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO, f:
$Mn_{0.4}Co_{0.6}O_{\delta}/3DOM\text{-}m\text{ TiSiWO, }g\text{: }Mn_{0.2}Co_{0.8}O_{\delta}/3DOM\text{-}m\text{ TiSiWO, }h\text{: }Co_{3}O_{4}/3DOM\text{-}m\text{ TiSiWO, }h\text$
TiSiWO)
Fig. S4. Raman spectra of $Mn_xCo_{1-x}O_{\delta}/3DOM$ -m TiSiWO catalysts with different x values
(a: 3DOM-m TiSiWO, b: MnO ₀ /3DOM-m TiSiWO, c: Mn _{0.8} Co _{0.2} O ₀ /3DOM-m TiSiWO,
d: $Mn_{0.6}Co_{0.4}O_{\delta}/3DOM$ -m TiSiWO, e: $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO, f:

 $Mn_{0.4}Co_{0.6}O_{\delta}/3DOM\text{-}m\text{ TiSiWO, g: }Mn_{0.2}Co_{0.8}O_{\delta}/3DOM\text{-}m\text{ TiSiWO, h: }Co_{3}O_{4}/3DOM\text{-}m\text{ TiSiWO, h: }Co_{3}O_$

Fig. S5. (A) NO conversion and (B) CO_2 concentration of $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO catalyst in the presence or absence of water vapor.

(Reaction conditions: 1000 ppm NO, 1000 ppm NH₃, 5% O₂, 5% H₂O, balance N₂.)

Fig. S6. (A) NO conversion and (B) CO_2 concentration of $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO catalyst in the presence or absence of NH_3 .

(Reaction conditions: 1000 ppm NO, 1000 ppm NH₃, 5% O₂, 5% H₂O, balance N₂.)

- Fig. S7. (A) NO conversion and (B) Soot conversion of the catalysts

1 1			
Catalyst	Surface area(m ² g ⁻¹) ^a	Total pore volume(cm ³ g ⁻¹) ^b	Pore size(nm) ^c
3DOM-m TiSiWO	167.7	0.260	6.3
MnO _δ /3DOM-m TiSiWO	56.2	0.109	7.2
Mn _{0.8} Co _{0.2} O _δ /3DOM-m TiSiWO	57.9	0.118	7.3
Mn _{0.6} Co _{0.4} O _δ /3DOM-m TiSiWO	58.2	0.117	7.3
Mn _{0.5} Co _{0.5} O _δ /3DOM-m TiSiWO	56.5	0.114	7.4
Mn _{0.4} Co _{0.6} O _δ /3DOM-m TiSiWO	59.1	0.134	8.6
Mn _{0.2} Co _{0.8} O _δ /3DOM-m TiSiWO	62.9	0.161	9.8
Co ₃ O ₄ /3DOM-m TiSiWO	61.5	0.125	7.9

Table S1 Textural properties of as-prepared catalysts

^aCalculated by BET method. ^bCalculated by BJH desorption cumulative volume of pores between 1.7 nm and 300 nm diameter. ^cCalculated by BJH desorption average pore diameter.

	F	eed com	position	l						
Catalyst	NO (ppm)	NH ₃ (ppm)	O ₂ (vol %)	H ₂ O (vol %)	GHSV (h ⁻¹)	TOF(s ⁻¹) ×10 ⁻³	Temperature (°C)ª	X _{NO} (%)	Ref.	
			_				150-200	80		
Co-Mn/TiO ₂	500	500	5	5	120,000	-	200 ^ь	92 ^b	[1]	
17%Mn ₇ Ce ₂ -							125-225	80		
CM	500	550	5	10	20,000	-	175 ^b	75 ^b	[2]	
Mn8/SEP-S	600	600	3		30,000	0.3 (200 °C)	-	-	[3]	
Hierc-			-	_	CO 000	0.583	110-250	90	E 43	
$MnFe_{0.6}Co_{0.4}$ O _x	500 500 5 5 60,000 (100 °C)	180 ^b	90 ^b	[4]						
						- 000	240-280	100		
MnO ₂ -Co-0.8	500	500	5	5	50000		110 ^b	75 ^b	[5]	
α- Mn ₂ O ₃ (111)	500	500	5	-	36000	3.5 (510 °C)	480-620	80	[6]	
MnO_x -ZSM- 5 (150)	500	500	4	-	30000	0.293 (100 °C)	190-290	100	[7]	
	900+									
Mn/TiSi(3:1)	100N O ₂	1000	10		80000	-	250	75	[8]	
MnO _x /TiO ₂ (NS)	1000	1100	4	2.5	50000	0.7 (160 °C)	150 ^b	62 ^b	[9]	
CoMn/ZSM- 5	500	500	5	5	50000	-	100-250 ^b	80 ^b	[10]	
Mn _{0.5} Co _{0.5} O _δ / 3DOM-m TiSiWO	1000	1000	5	5	20000	0.57 (100 °C)	216-426	90	This work	

Table S2. Performance	of various	catalysts	for SCR	reaction
-----------------------	------------	-----------	---------	----------

a. Temperature or temperature window corresponding to conversion of NO.b. NO conversion and corresponding temperature window of the catalysts in the presence of water.

	Fe	ed compos	sition	_						
Catalyst	NO (ppm)	O ₂ (vol%)	H ₂ O (vol%)	Flow rate (ml min ⁻¹)	Catal/ soot	TOF(s ⁻¹) ×10 ⁻³	T ₁₀ ^a (°C)	$\frac{T_{50}{}^{a}}{T_{m}{}^{b}} (^{o}C)$	T ₉₀ ^a (°C)	Ref
$\frac{Mn_{x}Ce_{1-}}{_{x}O_{\delta}/SiO_{2}}$	2000	10	10	50	10		-	350	-	[11]
α -Mn ₂ O ₃	2500	5	10	80	10		-	420	-	[12]
α-MnO ₂ - Co ₃ O ₄ / AISI304	500	6	10	100	2.5		302	354	395	[13]
Ce ₁ MnO _x	2000	10	10	50	10	0.89 (250 °C)	272	329	362	[14]
K-OMS-2- M2	2000	10	10	50	10	0.91 (253 °C)	266	332	428	[15]
Ag/SmMn ₂ O ₅	500	10	5	500	10		350			[16]
$\frac{Mn_{0.5}Co_{0.5}}{O_{\delta}/3DOM}$ m TiSiWO	1000	5	5	100	10	1.47 (350 °C)		448		This work

Table S3. Performance of various catalysts for soot removal

a. T_{10} , T_{50} and T_{90} represented temperatures for soot conversion at 10%, 50% and 90%, respectively.

b. T_m represented the temperature of the maximum CO_2 concentration.

	Feed composition				F1	G . 1		17	T	
Catalyst	NO (ppm)	NH ₃ (ppm)	O ₂ (vol%)	H ₂ O (vol%)	Flow rate (ml min ⁻¹)	/soot	T(°C) ^a	X _{NO} (%)	1 _m (%)	Ref.
$\begin{array}{c} La_{0.7}Ag_{0.3}\\MnO_3\text{-}MW\end{array}$	2000	-	10	-	100	9/1	325	60	400	[17]
4CoAlO-800	2500	-	5	-	80	20/1	318°	3.5°	290 (T _i) ^b	[18]
$\begin{array}{c} Co_{2.5}Mg_{0.5} \\ Al_{0.92}Ce_{0.08} \end{array}$	600		20 10		150	20/1	160	15.4	449	[19]
$\begin{array}{c} Ce_{0.8}Mn_{0.1} \\ Zr_{0.1}O_2 \end{array}$	1000	1000	3	-	100	10/1	374–512	100	402	[20]
Fe ₁ -Mn ₃ -O _x	1000	1000	3	-	50	10/1	302–485	80	487	[21]
$\begin{array}{c} (La_{1.7}Rb_{0.3} \\ CuO_4)20 \\ /nmCeO_2 \end{array}$	2000	-	5	-	50	5/1	401°	26.8°	401	[22]
La _{1-x} K _x MnO ₃	1000	-	0.5	-	70	10/1	300	53	270	[23]
Mn _{0.5} Co _{0.5} O _ô /3 DOM-m TiSiWO	1000	1000	5	5	100	10/1	216-426	97	470	This work

Table S4. Performance of various catalysts for or simultaneous removal of soot and NO_x

a. Temperature or temperature window corresponding to conversion of NO.

b. T_i and T_m represented initial combustion temperature and the temperature of the maximum CO_2 concentration.

c. $N_{\rm 2}$ formation of related catalyst and corresponding to temperature.

Catalyst	$r_{NO} \times 10^{-5}$	$r_{soot} \times 10^{-8}$	$O_{amount} \times 10^{-5}$
	$(mol g^{-1}s^{-1})$	$(mol g^{-1}s^{-1})$	$(mol g^{-1})$
	0.71 (100 °C)		
MnO _δ /3DOM-m TiSiWO	1.60 (125 °C)	5.35	4.86
	2.59 (150 °C)		
Mr. Co. 0 /2DOM m	1.08 (100 °C)		
TiSiWO	2.14 (125 °C)	4.45	3.02
	3.13 (150 °C)		
	0.76 (100 °C)		
Co ₃ O ₄ /3DOM-m TiSiWO	1.75 (125 °C)	3.75	3.01
	2.75 (150 °C)		

Table S5 The reaction rate (r) for NH_3 -SCR/soot combustion and the amount of active oxygen species (O_{amount}) for soot combustion

Fig. S1 CO₂ concentrations at 350 °C as a function of time over catalysts before and after O₂ is removed from the reactant feed. (Reaction conditions: 1000 ppm NO, 1000 ppm NH₃, 5% O₂, 5% H₂O, balance N₂, flow rate = 150 ml min⁻¹)

Fig. S2. X-ray diffraction patterns of $Mn_xCo_{1-x}O_{\delta}/3DOM$ -m TiSiWO catalysts with different x values. (d: $Mn_{0.6}Co_{0.4}O_{\delta}/3DOM$ -m TiSiWO, e: $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO)

Fig. S3. Nitrogen adsorption-desorption isotherms of $Mn_xCo_{1-x}O_{\delta}/3DOM$ -m TiSiWO catalysts with different x values

(a: 3DOM-m TiSiWO, b: $MnO_{\delta}/3DOM$ -m TiSiWO, c: $Mn_{0.8}Co_{0.2}O_{\delta}/3DOM$ -m TiSiWO, d: $Mn_{0.6}Co_{0.4}O_{\delta}/3DOM$ -m TiSiWO, e: $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO, f: $Mn_{0.4}Co_{0.6}O_{\delta}/3DOM$ -m TiSiWO, g: $Mn_{0.2}Co_{0.8}O_{\delta}/3DOM$ -m TiSiWO, h: $Co_3O_4/3DOM$ -m TiSiWO)

Fig. S4. Raman spectra of $Mn_xCo_{1-x}O_{\delta}/3DOM$ -m TiSiWO catalysts with different x values (a: 3DOM-m TiSiWO, b: $MnO_{\delta}/3DOM$ -m TiSiWO, c: $Mn_{0.8}Co_{0.2}O_{\delta}/3DOM$ -m TiSiWO, d: $Mn_{0.6}Co_{0.4}O_{\delta}/3DOM$ -m TiSiWO, e: $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO, f: $Mn_{0.4}Co_{0.6}O_{\delta}/3DOM$ -m TiSiWO, g: $Mn_{0.2}Co_{0.8}O_{\delta}/3DOM$ -m TiSiWO, h: $Co_3O_4/3DOM$ -m TiSiWO)

Fig. S5. (A) NO conversion and (B) CO₂ concentration of Mn_{0.5}Co_{0.5}O_δ/3DOM-m TiSiWO catalyst in the presence or absence of water vapor. (Reaction conditions: 1000 ppm NO, 1000 ppm NH₃, 5% O₂, 5% H₂O, balance N₂.)

Fig. S6. (A) NO conversion and (B) CO_2 concentration of $Mn_{0.5}Co_{0.5}O_{\delta}/3DOM$ -m TiSiWO catalyst in the presence or absence of NH_3 .

(Reaction conditions: 1000 ppm NO, 1000 ppm NH₃, 5% O_2 , 5% H₂O, balance N₂.)

Fig. S7. (A) NO conversion and (B) Soot conversion of the catalysts (Reaction conditions: (A) 1000 ppm NO, 1000 ppm NH₃, 5% O₂, 5% H₂O, balance N₂, flow rate = 300 ml min⁻¹; (B) 1000 ppm NO, 1000 ppm NH₃, 5% O₂, 5% H₂O, balance N₂, flow rate = 100 ml min⁻¹;)

References

- 1 S. Z Xie, L. L. Li, L. J. Jin, Y. H. Wu, H. Liu, Q. J. Qin, X. L. Wei, J. X. Liu, L. H. Dong, B. Li, *Appl. Sur. Sci.*, 2020, **515**, 146014–146026.
- 2 S. Q Ni, X. L Tang, H. H. Yi, F. Y. Gao, C. Z. Wang, Y. R. Shi, R. C. Zhang, W. J. Zhu, *J. Rare Earth.*, 2020, In press, https://doi.org/10.1016/j.jre.2020.12.015.
- 3 X. L. Zhang, Q. Wu, Q. C. Diao, J. W. Wang, K. S. Xiao, B. J. Yang, X. P. Wu, *Chem. Eng. J.*, 2019, **370**, 364–371.
- 4 Y. L. Li, S. Y. Yang, H. G. Peng, W. M. Liu, Y, Y, Mi, Z. Wang, C. J. Tang, D. S. Wu, T. C. An, *J. Catal.*, 2021, **395**, 195–209.
- 5 H. X. Jiang, J. Wang, J. L. Zhou, Y. F. Chen, M. H. Zhang, *Ind. Eng. Chem. Res.*, 2019, 58, 1760–1768.
- 6 Z. Y. Fan, Z. Y. Wang, J. W. Shi, C. Gao, G. Gao, B. R. Wang, Y. Wang, X. Chen, C. He, C. M. Niu, J. Catal., 2019, 370, 30–37.
- 7 T. Qiao, Z. G. Liu, C. H. Liu, W. Meng, H, Sun, Y. Lu, Appl. Catal. A, 2021, 617, 118128-118136.
- 8 T. Boningari, D. K. Pappas, P. R. Ettireddy, A. Kotrba, P. G. Smirniotis, *Ind. Eng. Chem. Res.*, 2015, **54**, 2261–2273.
- 9 S. C. Deng, T. T. Meng, B. L. Xu, F. Gao, Y. H. Ding, L. Yu, Y. N. Fan, ACS Catal. 2016, 6, 5807–5815.
- 10 S. Q. Zhang, C. Zhang, Q. Wang, W. S. Ahn, Ind. Eng. Chem. Res., 2019, 58, 22857-22865.
- 11 X. H. Yu, L. Y. Wang, M. Z. Chen, X. Q. Fan, Z. Zhao, K. Cheng, Y. S. Chen, Z. Sojka, Y. C. Wei, J. Liu, *Appl. Catal. B*, 2019, **254**, 246–259.
- 12 L. Cheng, Y. Men, J. G. Wang, H. Wang, W. An, Y. Q. Wang, Z. C. Duan, J. Liu, *Appl. Catal. B*, 2017, **204**, 374–384.
- 13 G. Liu, J. H. Yu, L. Chen, N. J. Feng, J. Meng, F. Fang, P. Zhao, L. Wang, H. Wan, G. F. Guan, *Ind. Eng. Chem. Res.*, 2019, **58**, 13935–13949.
- 14 D. Yu, C. Peng, X. H. Yu, L. Y. Wang, K. X. Li, Z. Zhao, Z. G. Li, Fuel, 2022, 307, 121803-121817.
- 15 D. Yu, Y. Ren, X. H. Yu, X. Q. Fan, L. Y. Wang, R. D. Wang, Z. Zhao, K. Cheng, Y. S. Chen, Z. Sojka, A. Kotarba, Y. C. Wei, J. Liu, *Appl. Catal. B*, 2021, 285, 119779-119793.
- 16 B. F. Jin, B. H. Zhao, S. Liu, Z. G. Li, K. X. Li, R. Ran, Z. C. Si, D. Weng, X. D. Wu, *Appl. Catal. B*, 2020, **273**, 119058-119068.
- 17 L. Urán, J. Gallego, W. Y. Li, A. Santamaría, Appl. Catal. A, 2019, 569, 157-169.
- 18 Z. P. Wang, Z. Jiang, W. F. Shangguan, Catal. Commun. 2007, 8, 1659–1664.
- 19 F. F. Dai, M. Meng, Y. Q. Zha, Z. Q. Li, T. D. Hu, Y. N. Xie, J. Zhang, *Fuel Process. Technol.*, 2012, **104**, 43–49.
- 20 Y. Cheng, J. Liu, Z. Zhao, W. Y. Song, Y. C. Wei, Chem. Eng. Sci. 2017, 167, 219-228.
- 21 J. B. Tan, Y. C. Wei, Y. Q. Sun, J. Liu, Z. Zhao, W. Y. Song, J. M. Li, X. Zhang, J. Ind. Eng. Chem., 2018, 63, 84–94.
- 22 J. Liu, Z. Zhao, C. M. Xu, A. J. Duan, G. Y. Jiang, Ind. Eng. Chem. Res., 2010, 49, 3112-3119.
- 23 G. C. Dhal, S. Dey, D. Mohan, R. Prasad, Mater. Discov., 2017, 10, 37-42.