Bifunctional PDDA-stabilized β -Fe₂O₃ nanocluster for improved photoelectrocatalytic and magnetic field enhancing photocatalytic applications

Maoqi Li^{*a,b*}, Jian Wu^{*b**} and Guoliang Shen^{*a**}

a. School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. China

b. Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China

*Corresponding author's email: jwu@nimte.ac.cn, shengl_shxy@sut.edu.cn

Figure S1. Particle size distribution of β -Fe₂O₃@PDDA.

Figure S2. TEM image of bulk α -Fe₂O₃ (a); TEM image of α -Fe₂O₃ nanoparticle (b).

Figure S3. EDS spectrum of β -Fe₂O₃@PDDA.

Table S1. The crystal plane spacing of $\beta\mbox{-}Fe_2O_3@PDDA$ sample and PDF standard

value.

Planes-crystal	d-Spacing (Å)	crystal plane spacing of	Ratio(%)
structure	PDF#76-1821	β-Fe ₂ O ₃ @PDDA sample	
		(nm)	
(0 0 4)	5.6375	0.56	3
(1 0 0)	4.8151	0.48~0.49	13.8
(1 0 6)	2.9627	0.29~0.32	20.7
(1 1 -1)	2.7591	0.27~0.28	24.1
(1 1 3)	2.6074	0.26~0.27	37.9

Figure S4. XPS spectra of β -Fe₂O₃@PDDA nanocluster.

Figure S5. Magnetic hysteresis curve of β -Fe₂O₃@PDDA nanocluster.

Figure S6. β -Fe₂O₃@PDDA nanocluster samples are uniformly dispersed in aqueous solution(a), and let the solution sit for 10 d(b).

Figure S7. Electrocatalytic impedance spectra (EIS) Nyquist plots(inset:Equivalent circuits of Nyquist plots of materials consisting of three elements: R_s, R_{ct}, and CPE.)

S1. Mass activity and specific activity Calculation.

Mass activities (mA mg⁻¹) of catalysts are calculated based on the catalyst loading (0.25 mg cm⁻²) and the achieved current density j (mA cm⁻²) at an η of 520 mV. The corresponding equation is

Figure S8. Mass activity (MA) of bulk α -Fe₂O₃, α -Fe₂O₃ nanoparticle, β -Fe₂O₃@PDDA nanocluster and β -Fe₂O₃@PDDA nanocluster under an additional light for OER at an η of 520 mV.

Figure S9. CV curves for (a) β -Fe₂O₃@PDDA nanocluster; (b) bulk α -Fe₂O₃; (c) α -Fe₂O₃ nanoparticle in the region of 0.10~0.20 V *vs.* Ag/AgCl with various scan rates (10~120 mV s⁻¹) for OER; Fitting curves for of scanning rate and current density for (d) β -Fe₂O₃@PDDA nanocluster; (e) bulk α -Fe₂O₃; (f) α -Fe₂O3 nanoparticle.

Electrocatalysts	Overpotetial	Tafel slope	Electrolyte	Reference
	(mV)	(mV dec ⁻¹)	(pH)	
	<i>j</i> =10 mA cm ⁻²			
β-Fe ₂ O ₃ @PDDA NC	300	45	1.0 M KOH	This work
(PEC-OER)				
β-Fe ₂ O ₃ @PDDA NC	370	77	1.0 M KOH	This work
α -Fe ₂ O ₃ NP	430	107	1.0 M KOH	This work
α -Fe ₂ O ₃ B	460	129	1.0 M KOH	This work
α -Fe ₂ O ₃ @g-C ₃ N ₄	425	280	0.5 M KOH	1
γ-Fe ₂ O ₃ NWs	650	~	1.0 M KOH	2
α -Fe ₂ O ₃	310	272	0.1 M KOH	3
Fe ₂ O ₃	440	134	1.0 M KOH	4
Ni-Fe ₂ O ₃	277	68	1.0 M KOH	4
γ-FeOOH	550	~	1.0 M KOH	5
FeTiO ₃ hollow spheres	420	~	1.0 M KOH	6
NiO	\sim	242	1.0 M KOH	7
NiOOH	360	111	1.0 M KOH	8
Co ₃ O ₄ Mesoporous	636	~	0.1 M KOH	9
Co ₃ O ₄ Mesoporous	476	~	1.0 M KOH	9
Co_2CrO_4	400	87	1.0 M KOH	10
Co_2CrO_4	370	56	1.0 M KOH	10
IrO ₂	481	238	1.0 M HClO ₄	11
Pt	420	~	1.0 M KOH	12

 Table S2. Comparison of the OER activity for several recently reported active

 transition metal-based electrocatalysts.

Table S3. Comparison of several iron oxide based photocatalysis for RhB degradation

 reported in recent years.

Photocatalysts	Degradation time	Degradation	Reference.
	(min)	percentage of the	
		RhB dye (%)	
β-Fe ₂ O ₃ @PDDA NC	110	94	This work
(magnetic-field-enhanced)			
β-Fe ₂ O ₃ @PDDA NC	110	50	This work
α -Fe ₂ O ₃ NP	110	42	This work
α -Fe ₂ O ₃ B	110	23	This work
pure α -Fe ₂ O ₃	120	56	13
PANI/a-Fe ₂ O ₃ /FeOOH	120	91	13
α -Fe ₂ O ₃	100	60	14
α -Fe ₂ O ₃ /RT(0 mM)	100	76	14
α -Fe ₂ O ₃ /RT(0.025 mM)	100	93	14

References

- 1. O. Alduhaish, M. Ubaidullah, A. M. Al-Enizi, N. Alhokbany, S. M. Alshehri and J. Ahmed, *Sci Rep*, 2019, **9**, 14139.
- 2. S. Arumugam, Y. Toku and Y. Ju, *Sci Rep*, 2020, **10**, 5407.
- U. Farooq, P. Chaudhary, P. P. Ingole, A. Kalam and T. Ahmad, *ACS Omega*, 2020, 5, 20491-20505.
- A. Samanta, S. Das and S. Jana, ACS Sustain. Chem. Eng., 2019, 7, 12117-12124.
- D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Norskov, A. Nilsson and A. T. Bell, *J Am Chem Soc*, 2015, 137, 1305-1313.

- T. Han, Y. Chen, G. Tian, J. Q. Wang, Z. Ren, W. Zhou and H. Fu, *Nanoscale*, 2015, 7, 15924-15934.
- Y. Zhao, X. Jia, G. Chen, L. Shang, G. I. Waterhouse, L. Z. Wu, C. H. Tung,
 D. O'Hare and T. Zhang, *J Am Chem Soc*, 2016, **138**, 6517-6524.
- H.-Y. Wang, Y.-Y. Hsu, R. Chen, T.-S. Chan, H. M. Chen and B. Liu, *Adv. Energy Mater.*, 2015, 5, 1500091.
- H. Tüysüz, Y. J. Hwang, S. B. Khan, A. M. Asiri and P. Yang, *Nano Res.*, 2012, 6, 47-54.
- 10. C.-C. Lin and C. C. L. McCrory, ACS Catal., 2016, 7, 443-451.
- L. Ouattara, S. Fierro, O. Frey, M. Koudelka and C. Comninellis, *J Appl Electrochem*, 2009, **39**, 1361-1367.
- C. K. Ranaweera, C. Zhang, S. Bhoyate, P. K. Kahol, M. Ghimire, S. R.
 Mishra, F. Perez, B. K. Gupta and R. K. Gupta, *Mater. Chem. Front.*, 2017, 1, 1580-1584.
- R. Qin, L. Hao and J. Li, J. Inorg. Organoment. Polym. Mater, 2020, 30, 4452-4458.
- Z. Zhou, H. Yin, Y. Zhao, J. Zhang, Y. Li, J. Yuan, J. Tang and F. Wang, *Catalysts*, 2021, 11, 396.