Electronic supplementary information

Selective hydrogenation of CO₂ to CH₄ over two-dimensional nickel silicate molecular sieves[†]

Hyung-Ki Min,^{a,‡} Haehyun Min,^{b,‡} Sungjoon Kweon,^c Young Woo Kim,^d Siyeon Lee,^c Chae-Ho Shin,*^d Min Bum Park*^c and Sung Bong Kang*^b

^aLOTTE Chemical Research Institute, Daejeon 34110, Korea

^bSchool of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea

^cDepartment of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea

^dDepartment of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea

†Electronic supplementary information (ESI) available. See DOI: xxx

[‡]These authors contributed equally to this work.

*Corresponding authors: chshin@chungbuk.ac.kr (C.-H.S.); mbpark@inu.ac.kr (M.B.P.); sbkang@gist.ac.kr (S.B.K.)

	Bin			
Catalyst	Ni $2p_{1/2}^a$	Ni 2p _{3/2} ^a	Si 2p	$\Delta E_{\rm Ni-Si}^{b}$
Ni-DML-100	873.8	856.2	103.2	753.0
Ni-DML-120	874.1	856.2	103.1	753.1
Ni-DML-140	874.1	856.6	103.6	753.0
Ni-DML-160	874.3	856.6	102.6	754.0
Ni-DML-180	873.9	856.4	102.9	753.5
Ni/B-MWW	876.0 (32) 872.9 (68)	856.5 (36) 854.5 (64)	103.5	753.0 751.0

 Table S1 Binding energies of XPS spectra for the catalysts employed in this study

a The values in parentheses indicate the relative area ratios. ^b Difference in Ni $2p_{3/2}$ and Si 2p binding energies.

CO ₂ hydrogenation conditions							
Catalyst	Temp. (°C)	GHSV (cm ³ g _{-cat.} ⁻¹ h ⁻¹)TC	$OF(CO_2)(s^{-1})$	Ref.			
Ni-DML-100	330	84,000	0.008	This study			
Ni-DML-120	330	84,000	0.010	This study			
Ni-DML-140	330	84,000	0.079	This study			
Ni-DML-160	330	84,000	0.025	This study			
Ni-DML-180	330	84,000	0.012	This study			
5 wt.% Ni/B-MWW	330	84,000	0.051	This study			
5 wt.% Ni/Al ₂ O ₃	330	84,000	0.046	This study			
12 wt.% Ni/Al ₂ O ₃	275	10,000	0.060	40			
5 wt.% Ni/SiO ₂	300	6,000	0.103	41			
5 wt.% NiRu/SiO ₂	300	6,000	0.087	41			
10 wt.% NiRu/SiO ₂	300	6,000	0.044	41			
5 wt.% Ni/SiO ₂	350	22,000	0.076	42			
5 wt.% Ni/Al ₂ O ₃	300	6,000	0.063	43			
5 wt.% Ni ₃ Fe/Al ₂ O ₃	300	6,000	0.083	43			
3.4 wt.% NiRh _{0.1} /Al ₂ O ₃	300	6,000	0.037	43			
NiMgAl	350	2,400	0.034	44			
Ru/NiMgAl	350	2,400	0.034	44			

Table S2 Comparison of TOF for catalysts prepared in this and previous studies

Fig. S1 Powder XRD patterns of calcined B-MWW and Ni-DML-x (x = 100-180 °C) catalysts.

Fig. S2 Powder XRD patterns of calcined Ni/B-MWW and Ni/ γ -Al₂O₃ catalysts.

Fig. S3 N_2 sorption isotherms of Ni/B-MWW and Ni/ γ -Al₂O₃ catalysts.

Fig. S4 TGA/DTA curves of as-synthesized B-MWW and Ni-DML-x (x = 100-180 °C) samples.

Fig. S5 SEM images of B-MWW and Ni-DML-x (x = 100-180 °C) catalysts.

Fig. S6 STEM-EDS images of Ni/B-MWW and Ni/γ-Al₂O₃ catalysts.

Fig. S7 UV-DRS spectrum of Ni/B-MWW catalyst.

Fig. S8 IR spectrum in the structural region of the Ni/B-MWW catalyst.

Fig. S9 (a) Ni 2p XPS and (b) Si 2p XPS spectra for Ni/B-MWW and/or Ni/ γ -Al₂O₃ catalysts.

Fig. S10 ²⁹Si MAS NMR spectra of B-MWW, Ni-DML-x (x = 100-180 °C), and Ni/B-MWW catalysts.

Fig. S11 H_2 TPR profiles of Ni/B-MWW and Ni/ $\gamma\text{-Al}_2O_3$ catalysts.

Fig. S12 (a) CO₂ conversion, (b) CH₄ selectivity, and (c) CO selectivity of Ni-DML-160 catalyst pre-reduced with 80 vol.% H₂ (Ar balance) at different temperatures (450–650 °C) as a function of reaction temperature at a GHSV of 30,000 h^{-1} for 1.5 h at each temperature.

Fig. S13 (a) CO₂ conversion, (b) CH₄ selectivity, and (c) CO selectivity of Ni/B-MWW and Ni/ γ -Al₂O₃ catalysts as a function of reaction temperature at a GHSV of 30,000 h⁻¹ for 1.5 h at each temperature. The catalysts were routinely pre-reduced with 20 vol.% H₂ (Ar balance) at 450 °C for 1 h.

Fig. S14 (a) Powder XRD pattern, (b) IR spectrum in the structural region, and (c) TGA/DTA curves of the Ni-DML-140 catalyst after reaction.