SUPPLEMENTAL INFORMATION

Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over nanojunctions of cobalt–ceria binary oxide in water

Aicheng Chen^a[#], Tingting Li^a[#], Qian Zhang^a and Hu Zhu^{a,b}*

- ^a Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, P.R. China
- ^b College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, P.R. China

^{*} Corresponding author: Hu Zhu, zhuhu@fjnu.edu.cn

[#] These two authors contributed equally to this work.

Fig. S1 XPS spectra of Co 2p (a), Ce 3d (b) and O 1s (c) for various catalysts

Fig. S2 Influence of reaction time on the aerobic oxidation of HMF over the CoCe-15 catalyst at different reaction conditions

Fig. S3 Influence of reaction temperature on the aerobic oxidation of HMF over the CoCe-15 catalyst at 0.6 MPa O_2 pressure and various temperature for 4 h

Fig. S4 XRD patterns for the fresh and recycled CoCe-15

Fig. S5 XPS spectra of Co 2p (a), Ce 3d (b), and O 1s (c) for

the fresh and recycled CoCe-15

Fig. S6 EPR spectra for the fresh and recycled CoCe-15

Catalyst	O ₁₁ /(O ₁ +O ₁₁)	Co ²⁺ /(Co ³⁺ +Co ²⁺)	Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)	
Co ₃ O ₄	45.54%	48.71%	—	
CoCe-21	46.00%	50.79%	18.68%	
CoCe-18	48.40%	52.11%	24.79%	
CoCe-15	51.33%	53.08%	27.60%	
CoCe-12	49.59%	52.76%	26.85%	
CoCe-9	47.15%	51.39%	25.49%	
CoCe-6	46.27%	48.79%	23.72%	
CoCe-1	38.92%	43.26%	18.96%	
CeO ₂	37.96%	_	15.06%	

Table S1 The relative surface proportion of Co, Ce and O species at their differentvalence states in various catalysts.

All data were calculated from the relative intensities of the corresponding XPS peaks.

Catalyst C	Orridans	Additive		Temp.	Time	Conv.	FDCA	Apparent reaction rate	
	Oxidant	Dosage	Concentration	(°C)	(h)	(%)	Yield (%)	mmol _{FDCA} g ⁻¹ _{cat} MPa ⁻¹ _O h ⁻¹ (2)	кет.
CoCe-15	0.6 MPa O ₂	4 equiv. NaOH	0.027 M	130	4	100	77.4	0.143	This work
Co-Mn-0.25	1 MPa O_2	2 equiv. NaHCO ₃	0.10 M	120	5	99	95.2	0.950	S1
Ni-MnO _x	0.8 MPa O ₂	4 equiv. NaHCO ₃	0.40 M	100	28	100	93.8	0.419	S2
MOF-Mn ₂ O ₃	1.4 MPa O_2	3 equiv. NaHCO ₃	0.15 M	100	24	100	99.5	0.197	S3
MnO _x -CeO ₂	2.0 MPa O_2	2 equiv. $KHCO_3$	0.10 M	110	12	98.5	88.7	0.185	S4
β -MnO ₂ –HS	1 MPa O_2	3 equiv.NaHCO ₃	0.12 M	100	24	99	86	0.143	S5
Mn _{0.75} Fe _{0.25}	0.8 MPa O_2	4 equiv. NaOH	0.40 M	100	24	93	29.8	0.310	S6
Activated MnO ₂	1 MPa O_2	3 equiv. NaHCO $_3$	0.12 M	100	24	99	74	0.123	S5
$Ce_{0.5}Bi_{0.5}O_{2-\delta}$	1 MPa O_2	4 equiv. NaOH	0.10 M	65	1	100	8	0.120	S7
MnO ₂	1 MPa O_2	3 equiv. NaHCO $_3$	0.12 M	100	24	99	91	0.076	S8
MnCo ₂ O ₄	1 MPa O_2	3 equiv. KHCO₃	0.12 M	100	24	99.5	70.9	0.059	S9
SrMnO₃	1 MPa O_2	3 equiv. NaHCO ₃	0.12 M	100	24	99	58	0.048	S8

Table S2 Comparison on catalytic performances of cheap metal oxide catalysts for the aerobic oxidation of HMF to FDCA in basic system

Catalyst	BET surface	Pore volume	Average pore	Crystallite size ^a (nm)	
	area (m² g-¹)	(cm ³ g ⁻¹)	size (nm)	Co ₃ O ₄	CeO ₂
CoCe-15-recycled	42.8	0.28	26.2	21.4	_

 Table S3 Properties of the recycled catalyst of CoCe-15

 a Calculated by Scherrer equation based on the XRD principal peak at 36.8 $^\circ$ and 28.5 $^\circ$ for Co_3O_4 and CeO_2, respectively.

References

- S1. K. T. V. Rao, J. L. Rogers, S. Souzanchi, L. Dessbesell, M. B. Ray and C. Xu, *ChemSusChem*, 2018, **11**, 3323-3334.
- S2. K. Yu, Y. Liu, D. Lei, Y. Jiang, Y. Wang, Y. Feng, L.-L. Lou, S. Liu and W. Zhou, *Catal. Sci. Technol.*, 2018, **8**, 2299-2303.
- S3. L. Bao, F. Z. Sun, G. Y. Zhang and T.-L. Hu, ChemSusChem, 2020, 13, 548-555.
- S4. X. Han, C. Li, X. Liu, Q. Xia and Y. Wang, Green Chem., 2017, 19, 996-1004.
- S5. E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba and M. Hara, J. Am. Chem. Soc., 2019, **141**, 890-900.
- S6. F. Neațu, R. S. Marin, M. Florea, N. Petrea, O. D. Pavel and V. I. Pârvulescu, *Appl. Catal. B: Environ.*, 2016, **180**, 751-757.
- S7. Z. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang and X. Yang, *Catal. Sci. Technol.*, 2015, **5**, 1314-1322.
- S8. E. Hayashi, T. Komanoya, K. Kamata and M. Hara, *ChemSusChem*, 2017, **10**, 654-658.
- S9. S. Zhang, X. Sun, Z. Zheng and L. Zhang, Catal. Commun., 2018, 113, 19-22.