Enhancing catalytic performance of PdAu catalysts by Winduced strong interaction for the direct synthesis of H₂O₂

Meijia Zhang^{1#}, Haoxiang Xu^{1#}, Yibin Luo², Jiqin Zhu^{1*} and Daojian Cheng^{1*}

¹State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of

Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

²State Key Laboratory of Catalytic Materials and Reaction Engineering, RIPP, SINOPEC, Beijing 100083, People's Republic of China

* Corresponding authors. E-mail addresses: <u>chengdj@mail.buct.edu.cn</u> (D. Cheng), <u>zhujq@mail.buct.edu.cn</u> (J. Zhu)

[#] These author contribute equally.

Figure and table captions

Figure S1. TEM, HAADF-STEM and particle size distribution images of (a~c) PdAu/TiO₂, (d~f) PdAu/WO₃-TiO₂, (g~i) WO₃-PdAu/TiO₂ and (j~l) PdAuWO₃/TiO₂. **Figure S2.** (a) HRTEM, (b) HAADF-STEM and (c~f) corresponding EDS mapping of PdAu/TiO₂, (g~h) HAADF-STEM and corresponding EDS mapping of nanoparticle in PdAu/TiO₂.

Figure S3. (a) HAADF-STEM, (b~d) corresponding EDS mapping images of WO_3/TiO_2 .

Figure S4. (a) HRTEM, (b) HAADF-STEM and $(c \sim g)$ corresponding EDS mapping images of WO₃-PdAu/TiO₂, (h) HAADF-STEM and (i) corresponding line-scan of nanoparticle in WO₃-PdAu/TiO₂.

Figure S5. (a) HRTEM, (b) HAADF-STEM, (c~g) corresponding EDS mapping images of PdAuWO₃/TiO₂, (h) HAADF-STEM and (i) corresponding line-scan of nanoparticle in PdAuWO₃/TiO₂.

Figure S6. Point scan data of nanoparticles in the catalysts.

Figure S7. XRD patterns of the catalysts.

Figure S8. Ti 2p XPS spectrums of PdAu/TiO₂ and TiO₂.

Figure S9. (a) Pd 3d and (b) Au 4f XPS spectrums of PdAu/WO₃-TiO₂ catalysts with different W content.

Table S1. The actual amount of Pd, Au and W loaded on the catalysts.

Table S2. List of catalysts for the direct synthesis of H₂O₂ in previous literatures.

Table S3. The mass radio of Pd, Au and W in the catalysts measured by XPS and ICP.

Table S4. Surface Pd⁰ and Pd²⁺ percent of PdAu/WO₃-TiO₂ catalysts with different W content.

Figure S1. TEM, HAADF-STEM and particle size distribution images of (a~c) PdAu/TiO₂, (d~f) PdAu/WO₃-TiO₂, (g~i) WO₃-PdAu/TiO₂ and (j~l) PdAuWO₃/TiO₂.

Figure S2. (a) HRTEM, (b) HAADF-STEM and (c~f) corresponding EDS mapping of PdAu/TiO₂, (g~h) HAADF-STEM and corresponding EDS mapping of nanoparticle in PdAu/TiO₂.

Figure S3. (a) HAADF-STEM, (b~d) corresponding EDS mapping images of WO_3/TiO_2 .

Figure S4. (a) HRTEM, (b) HAADF-STEM and (c~g) corresponding EDS mapping images of WO₃-PdAu/TiO₂, (h) HAADF-STEM and (i) corresponding line-scan of nanoparticle in WO₃-PdAu/TiO₂.

Figure S5. (a) HRTEM, (b) HAADF-STEM and (c~g) corresponding EDS mapping images of PdAuWO₃/TiO₂, (h) HAADF-STEM and (i) corresponding line-scan of nanoparticle in PdAuWO₃/TiO₂.

(a)	PdAu/TiO ₂	Size (nm)		Pd (at%)		Au (at%)	
P	1	5.01		49.71		50.29	
50 nm	2	9.83		51.02		48.98	
(b)	PdAu/WO ₃ -TiO ₂	Size (nm)	l (a	Pd it%)	Au (at%)	W (at%)
O,	1	6.94	80).44	5.60)	13.97
<u>20iam</u>	2	15.00	8	.26	66.78		24.95
(c) (c)	WO ₃ -PdAu/TiO ₂	Size (nm)) (a	Pd at%)	Au (at%)	W (at%)
1 <mark>0</mark>	1	8.00	86	6.60	3.07	7	10.34
20 m	2	10.60 52.30 22.0		9	25.60		
(d)	PdAuWO ₃ /TiO ₂	Size (nm)	l (a	Pd it%)	Au (at%)	W (at%)
O ¹	1	4.78	84	1.71	0.38	}	14.91
50 nm	2	8.38	65	5.38	20.7	2	13.90

Figure S6. Point scan data of nanoparticles in the catalysts.

Figure S7. XRD patterns of the catalysts.

Figure S8. Ti 2p XPS spectrums of PdAu/TiO₂ and TiO₂.

Figure S9. (a) Pd 3d and (b) Au 4f XPS spectrums of PdAu/WO₃-TiO₂ catalysts with different W content.

Pd (wt%)	Au (wt%)	W (wt%)
2.7	2.8	
2.7	2.8	3.3
2.6	2.6	3.2
2.7	2.9	3.1
		3.2
2.8	2.8	1.1
2.8	2.7	1.8
2.8	2.7	3.5
2.8	2.8	5.0
3.0	3.2	
3.0	3.1	3.2
	Pd (wt%) 2.7 2.7 2.6 2.7 2.6 2.7 2.8 2.8 2.8 2.8 2.8 3.0 3.0 3.0	Pd (wt%) Au (wt%) 2.7 2.8 2.7 2.8 2.6 2.6 2.7 2.9

Table S1. The actual amount of Pd, Au and W loaded on the catalysts.

		Reaction		Reaction		Productivity	
Reaction Catalyst	Additive	Temperatur	Time (h)	Pressure	Solvent	(mol _{H2O2} kg _c	Selectivity
		e (°C)		(MPa)		$at^{-1}h^{-1}$)	(%)
PdAu/WO3-TiO2 (In this							
work)	H_2SO_4	2	0.25	4	CH ₃ OH+H ₂ O	662.6	85.5
W-Pd/Al ₂ O ₃ ¹	H_2SO_4	2	0.25	4	CH ₃ OH+H ₂ O	125.3	59.1
Pd ₆ Pb/TiO ₂ ²	/	0	0.5	4	CH ₃ OH+H ₂ O	170.1	56.7
Pd ₃ Pb cubes/s-TiO ₂ ³	/	30	1	4	C ₂ H ₅ OH	222.4	53
R-PdNi/TiO ₂ -C ⁴	/	25	1.5	0.1	H_2O	83.3	96.15
PdAu@HZSM-5 ⁵		2	0.5	4	CH ₃ OH+H ₂ O	27.73	90
Au-Pd/TiO ₂ ⁶	CO ₂	2	0.5	4	CH ₃ OH+H ₂ O	93	44
Au-Pd-G6%T ⁷	H_2SO_4	5	1	4	CH ₃ OH	55	64
PdTe/Al ₂ O ₃ ⁸	H_2SO_4	10	1/6	0.1	C ₂ H ₅ OH	84.7	52.9
AuPdPt/TiO ₂ ⁹	/	2	0.5	4	CH ₃ OH+H ₂ O	112	37
Pd@NiO ₃ /TiO ₂ ¹⁰	/	2	0.5	4	CH ₃ OH+H ₂ O	89	81
Pd-Sb/TiO ₂ ¹¹	H_2SO_4	10	1/6	0.1	C ₂ H ₅ OH	46.6	73
Pd-Zn/ Al ₂ O ₃ ¹²	H_2SO_4	2	0.25	3	CH ₃ OH	216.2	78.5
Pd/HAp ¹³	H_2SO_4	10	0.5		C ₂ H ₅ OH	37.1	43
AuPd/2LbL ¹⁴	NaBr+H ₂ SO ₄	42	3	2	C ₂ H ₃ N+H ₂ O	210	67
Pd-Te/TiO ₂ ¹⁵	H_2SO_4	10	1/6	0.1	CH ₃ OH	29.3	~100
Pd-Ag/SiO ₂ ¹⁶	H_2SO_4	2	0.25	3	CH ₃ OH	58.3	70.9
3 wt% Pd-2 wt% Sn/Ti O_2^{17}	/	2	0.5	4	CH ₃ OH+H ₂ O	61	96
Pd/SiO ₂ ¹⁸	KBr+ H ₂ PO ₄	20	3	0.1	C ₂ H ₅ OH+H ₂ O	4.77	62
Pd/N-TiO ₂ ¹⁹	H_2SO_4	10	2	0.1	C ₂ H ₅ OH	41	58.8
Pd/HNb ₃ O ₈ -NS ²⁰	/	20	4	0.2	CH ₃ OH	2.3	16
Pd/TiO ₂ ²¹	H_2SO_4	10	0.5	0.1	CH ₃ OH	29.9	61
Pd/C ²²	HC1	10	4	/	C ₂ H ₅ OH+ H ₂ O	134.9	74

Table S2. List of catalysts for the direct synthesis of H_2O_2 in previous literatures.

PdAu/TiO ₂ ²³	H_2SO_4	10	1/6	0.1	C ₂ H ₅ OH	69.9	48.1
Pd/PAH-K262124	HBr	30	3	5	CH ₃ OH	12.7	73
Pd/C ²⁵	H_2SO_4	20	4	2.1	H ₂ O	170	59.4
Au-Pd/C ²⁶	/	2	0.5	4	CH ₃ OH+H ₂ O	110	80
Pd-Au/ZrO ₂ ²⁷	H_2SO_4	20	5	0.1	CH ₃ OH	16.7	52

Catalysta	Measurement	$\mathbf{D}_{\mathbf{d}}$ (with)	Λ_{11} ($xyt0/$)	W (wt%)	
Catalysis	method	Fu (wt/0)	Au (wt/0)		
	XPS	44.72	55.28		
	ICP	48.9	51.1		
	XPS	5.97	4.43	89.6	
$PdAuWO_{3}/11O_{2}(3W)$	ICP	30.7	31.7	37.6	
WO ₃ -PdAu/TiO ₂ (3W)	XPS	11.54	11.33	77.13	
	ICP	30.4	31.3	38.3	
PdAu/WO ₃ -TiO ₂ (3W)	XPS	7.82	6.54	85.63	
	ICP	31.6	33.2	35.2	
PdAu/SiO ₂	XPS	47.83	52.17		
	ICP	49.0	51.0		
	XPS	30.72	32.16	37.13	
$raAu/wO_3-SiO_2(3W)$	ICP	32.2	33.4	34.4	

Table S3. The mass radio of Pd, Au and W in the catalysts measured by XPS and ICP.

Catalyst	Pd ⁰ (%)	Pd^{2+} (%)
PdAu/1WO ₃ -TiO ₂	82.46	17.54
PdAu/3WO ₃ -TiO ₂	80.53	19.47
PdAu/5WO ₃ -TiO ₂	74.69	25.31

Table S4. Surface Pd⁰ and Pd²⁺ percent of PdAu/WO₃-TiO₂ catalysts with different W content.

References

- Zhang M, Luo Y, Wu D, Li Q, Xu H, Cheng D. Promoter role of tungsten in W-Pd/Al₂O₃ catalyst for direct synthesis of H₂O₂: Modification of Pd/PdO ratio. Applied Catalysis A: General. 2021;628:118392.
- Cao K, Yang H, Bai S, Xu Y, Yang C, Wu Y, Xie M, Cheng T, Shao Q, Huang X. Efficient Direct H₂O₂ Synthesis Enabled by PdPb Nanorings via Inhibiting the O-O Bond Cleavage in O₂ and H₂O₂. ACS Catalysis. 2021;11(3):1106-1118.
- Naina VR, Wang S, Sharapa DI, Zimmermann M, Hähsler M, Niebl-Eibenstein L, Wang J, Wöll C, Wang Y, Singh SK, Studt F, Behrens S. Shape-Selective Synthesis of Intermetallic Pd₃Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide. ACS Catalysis. 2021;11(4):2288-2301.
- Huynh T-T, Huang W-H, Tsai M-C, Nugraha M, Haw S-C, Lee J-F, Su W-N, Hwang BJ. Synergistic Hybrid Support Comprising TiO₂-Carbon and Ordered PdNi Alloy for Direct Hydrogen Peroxide Synthesis. ACS Catal. 2021;11(14):8407-8416.
- Jin Z, Liu Y, Wang L, Wang C, Wu Z, Zhu Q, Wang L, Xiao F-S. Direct Synthesis of Pure Aqueous H₂O₂ Solution within Aluminosilicate Zeolite Crystals. ACS Catalysis. 2021;11(4):1946-1951.
- Santos A, Lewis RJ, Malta G, Howe AGR, Morgan DJ, Hampton E, Gaskin P, Hutchings GJ. Direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research. 2019;58(28):12623-12631.
- Guo S, Zhang S, Fang Q, Abroshan H, Kim HJ, Haruta M, Li G. Gold-Palladium Nanoalloys Supported by Graphene Oxide and Lamellar TiO₂ for Direct Synthesis of Hydrogen Peroxide. ACS Applied Materials & Interfaces. 2018;10(47):40599-40607.
- 8. Tian P, Xuan F, Ding D, Sun Y, Xu X, Li W, Si R, Xu J, Han Y-F. Revealing the role of tellurium in palladium-tellurium catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis. 2020;385:21-29.
- Gong X, Lewis RJ, Zhou S, Morgan DJ, Davies TE, Liu X, Kiely CJ, Zong B, Hutchings GJ. Enhanced catalyst selectivity in the direct synthesis of H₂O₂ through Pt incorporation into TiO₂ supported AuPd catalysts. Catalysis Science & Technology. 2020;10(14):4635-4644.
- Feng Y, Shao Q, Huang B, Zhang J, Huang X. Surface engineering at the interface of core/shell nanoparticles promotes hydrogen peroxide generation. National Science Review. 2018;5(6):895-906.
- 11. Ding D, Xu X, Tian P, Liu X, Xu J, Han Y-F. Promotional effects of Sb on Pdbased catalysts for the direct synthesis of hydrogen peroxide at ambient pressure. Chinese Journal of Catalysis. 2018;39(4):673-681.
- 12. Wang S, Gao K, Li W, Zhang J. Effect of Zn addition on the direct synthesis of hydrogen peroxide over supported palladium catalysts. Applied Catalysis A: General. 2017;531:89-95.
- 13. Tian P, Ouyang L, Xu X, Ao C, Xu X, Si R, Shen X, Lin M, Xu J, Han Y-F. The origin of palladium particle size effects in the direct synthesis of H₂O₂: Is smaller

better? Journal of Catalysis. 2017;349:30-40.

- Kanungo S, Paunovic V, Schouten JC, Neira D'Angelo MF. Facile Synthesis of Catalytic AuPd Nanoparticles within Capillary Microreactors Using Polyelectrolyte Multilayers for the Direct Synthesis of H₂O₂. Nano Letters. 2017;17(10):6481-6486.
- 15. Tian P, Xu X, Ao C, Ding D, Li W, Si R, Tu W, Xu J, Han YF. Direct and selective synthesis of hydrogen peroxide over palladium-tellurium catalysts at ambient pressure. ChemSusChem. 2017;10(17):3342-3346.
- 16. Gu J, Wang S, He Z, Han Y, Zhang J. Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over ActivatedCarbon-Supported Pd-Ag Alloy Catalysts. Catal Sci Technol. 2016;6(3):809-817.
- 17. Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ, Ntainjua EN, Edwards JK, Carley AF, Borisevich AY, Kiely CJ, Hutchings GJ. Palladium-Tin Catalysts for the Direct Synthesis of H₂O₂ with High Selectivity. Science. 2016;351(6276):965-968.
- 18. Jeong HE, Kim S, Seo M-g, Lee D-W, Lee K-Y. Catalytic Activity of Pd Octahedrons/SiO₂ for the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. J Mol Catal A: Chem. 2016;420:88-95.
- Ao C, Tian P, Ouyang L, Da G, Xu X, Xu J, Han Y-F. Dispersing Pd nanoparticles on N-doped TiO₂: a highly selective catalyst for H₂O₂ synthesis. Catalysis Science & Technology. 2016;6(13):5060-5068.
- 20. Lee N, Chung Y-M. Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Pd-Supported HNb₃O₈ Metal Oxide Nanosheet Catalyst. Res Chem Intermed. 2016;42(1):95-108.
- 21. Ouyang L, Tian P, Da G, Xu X, Ao C, Chen T, Si R, Xu J, Han Y. The Origin of Active Sites for Direct Synthesis of H₂O₂ on Pd/TiO₂ Catalysts: Interfaces of Pd and PdO Domains. J Catal. 2015;321:70-80.
- 22. Hu B, Deng W, Li R, Zhang Q, Wang Y, Delplanque-Janssens F, Paul D, Desmedt F, Miquel P. Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Journal of Catalysis. 2014;319:15-26.
- 23. Ouyang L, Da G-j, Tian P-f, Chen T-y, Liang G-d, Xu J, Han Y-F. Insight into active sites of Pd-Au/TiO₂ catalysts in hydrogen peroxide synthesis directly from H₂ and O₂. Journal of Catalysis. 2014;311:129-136.
- 24. Kim J, Chung Y-M, Kang S-M, Choi C-H, Kim B-Y, Kwon Y-T, Kim TJ, Oh S-H, Lee C-S. Palladium Nanocatalysts Immobilized on Functionalized Resin for the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. ACS Catalysis. 2012;2(6):1042-1048.
- 25. Inoue T, Kikutani Y, Hamakawa S, Mawatari K, Mizukami F, Kitamori T. Reactor design optimization for direct synthesis of hydrogen peroxide. Chemical Engineering Journal. 2010;160(3):909-914.
- 26. Edwards JK, Solsona B, Ntainjua N E, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ. Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science. 2009;323:1037-1041.

27. Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F, Cruciani G, Pinna F, Strukul G. Influence of the Preparation Method on the Morphological and Composition Properties of Pd-Au/ZrO₂ Catalysts and Their Effect on the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen. J Catal. 2009;268(1):122-130.