Supporting Information for

Asymmetric Electrocarboxylation of 4'-methylacetophenone over PrCoO₃ Perovskites

Yi-Jun Zhao, Li-Rong Yang, Le-Ting Wang, Ying-Wang, Jia-Xing Lu *and Huan Wang *

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry

and Molecular Engineering, East China Normal University, Shanghai, 200062, China

* Corresponding Authors: jxlu@chem.ecnu.edu.cn, hwang@chem.ecnu.edu.cn

1. Supplementary Methods

The product obtained by asymmetric electrocarboxylation of 4'methylacetophenone is 2-hydroxy-2-(4-methylphenyl)propanoic acid. The ee value and yield are both detected by HPLC. The specific detection method is as follows: chiral chromatographic column: AD-H, the mobile phase ratio: n-hexane: isopropanol: trifluoroacetic acid = 80:20:1, the UV detection wavelength: 235 nm, the mobile phase flow rate: 0.50 mL/min, the injection volume: 20 μ L. Peaks of both R and S configurations of 2-hydroxy-2-(4-methylphenyl)propanoic acid (**Fig. S1**) can be detected by HPLC.

The ee value of the product is determined by the peak integral area corresponding to the two configurations of R and S in **Fig. S2**, using the following formula:

ee=|([R]-[S])/([R]+[S])|×100%

Where [R] and [S] are corresponded to the peak integrated areas of the R and S configuration products from the HPLC chart, respectively.

The yield of the product was calculated from the sum of the areas of the two peaks, ie, [R]+[S], according to the calibration curve.

Fig. S1 HPLC chromatogram of standard product.

Fig. S2 HPLC chromatogram of post-electrolysis solution obtained on PrCoO₃ cathode.

2. Supplementary Figures

Fig. S3 XRD pattern of PrCoO₃-500.

Fig. S4 TGA curve of Pr-Co-O precursor.

Fig. S5 XPS spectra of PrCoO₃-T.

Fig. S6 XRD patterns of (A) PrCoO₃-700 before and after use and (B) CP.

Fig. S7 SEM image of used PrCoO₃-700.

Fig. S8 FT-IR spectra of PrCoO₃-700 before and after use.

Fig. S9 Cyclic voltammograms of 10 mM different aromatic ketones in DMF-0.1 M TEAI with the scan rate of 0.1 V s⁻¹ under CO_2 atmosphere on $PrCoO_3$ -700.

3. Supplementary Tables

Table S1 O 1s and Co 2p_{3/2} XPS analyses of PrCoO₃-T

Material	O _A :O _L	Co ³⁺ /Co ²
PrCoO ₃ -600	1.02	2.69
PrCoO ₃ -700	1.65	2.78
PrCoO ₃ -800	1.07	2.48
PrCoO ₃ -900	1.01	2.34

 Table S2 Compared of PrCoO3 for asymmetric electrocarboxylation of aromatic

areu	of FICOO ₃ for asymmetric electrocarbo
	ketones with other published methods

Substrate	Electrode	Inducer	Yield (%) ^b	ee (%) ^c	Ref.
O	Ss	CN	37.4	S-32.8	[1]
	Ss	CD	24.5	R-29.8	[2]
O U	LaFeO ₃	t-Bu(R,R)salen(Co(II))	50	R-82	[3]
	La ₇ Sr ₃ Fe ₈ Ni ₂ O	3 t-Bu(R,R)salen(Co(II))	79	R-94	[4]
	PrCoO ₃	t-Bu(R,R)salen(Co(II))	54	R-95	This work

^a Solvent: DMF. Anode: Pt Mesh. Supporting electrolyte: 0.1 M TEAI. Substrate concentration: 50 mM. Inducer concentration: 2.5 mM. $P(CO_2)$: 1×10^5 Pa. Temperature: 20°C.

^b The yield was based on the substrate.

^c The ee was determined by HPLC analysis. R- (S-): Rectus (Sinister) configuration dominated.

4. References

- S.-F. Zhao, M.-X. Zhu, K. Zhang, H. Wang and J.-X. Lu, *Tetrahedron Letters*, 2011, **52**, 2702-2705.
- [2] K. Zhang, H. Wang, S.-F. Zhao, D.-F. Niu and J.-X. Lu, *Journal of Electroanalytical Chemistry*, 2009, 630, 35-41.
- [3] L.-R. Yang, J.-J. Zhang, Y.-J. Zhao, Z.-L. Wang, H. Wang and J.-X. Lu, *Electrochimica Acta*, 2021, **398**, 139308-139316.
- [4] L.-R. Yang, Y.-J. Zhao, C.-J. Jiang, R. Xiong, H. Wang and J.-X. Lu, *Journal of Catalysis*, 2021, 401, 224-233.