Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Supermagnetic Mn-substituted ZnFe₂O₄ in AB-sites Hybridization for Ultra-effective catalytic degradation of azoxystrobin

Zhong-Ting Hu,^{a,b} Zi-Yan Jin,^a Si-Yan Gong,^a Xiuzhen Wei,^a Jia Zhao,^b Mian Hu,^{a,*} Jun Zhao,^{c,*} Zhong Chen,^d Zhiyan Pan,^a Xiaonian Li,^b

^a College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China

^b Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China

° Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong SAR

^d School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

*E-mail: mianhu@zjut.edu.cn; zhaojun@hkbu.edu.hk

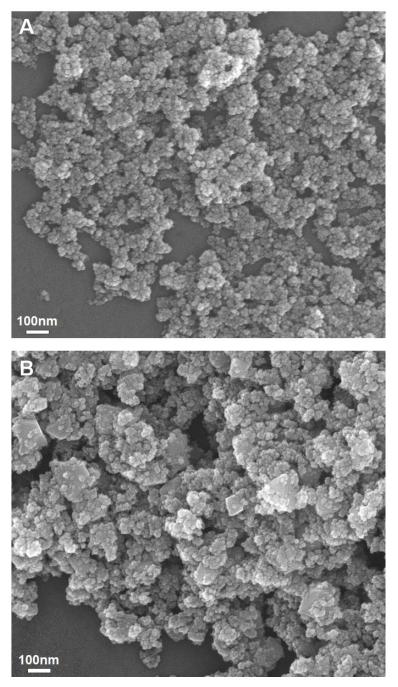
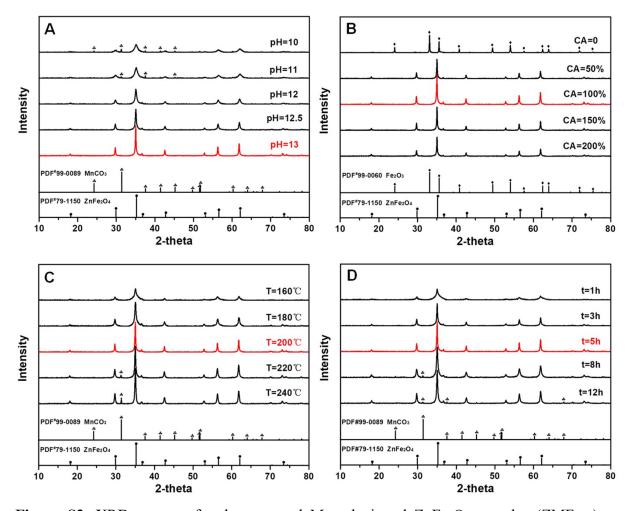
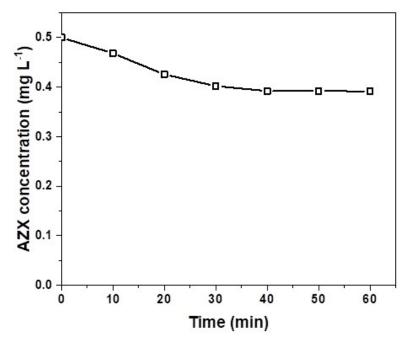




Figure S1. SEM images of the ZF and MF catalysts.

Figure S2. XRD patterns for the prepared Mn-substituted $ZnFe_2O_4$ samples (ZMF_{0.75}) at different pH value (A), citric acid addition (B), temperature (C) and reaction time (D) in hydrothermal reaction. Experimental conditions: (A) [CA] = 100%, T = 200 °C, t = 5 h; (B) pH = 13, T = 200 °C, t = 5 h; (C) pH = 13, [CA] = 100\%, t = 5 h; (D) pH = 13, [CA] = 100\%, T = 200 °C.

Figure S3. AZX removal efficiency by ZMF0.75 adsorption at the control experimental conditions of $[AZX] = 0.5 \text{ mg L}^{-1}$, $[ZMF_{0.75}] = 0.2 \text{ g L}^{-1}$, and $pH = 4.5 \pm 0.2$.

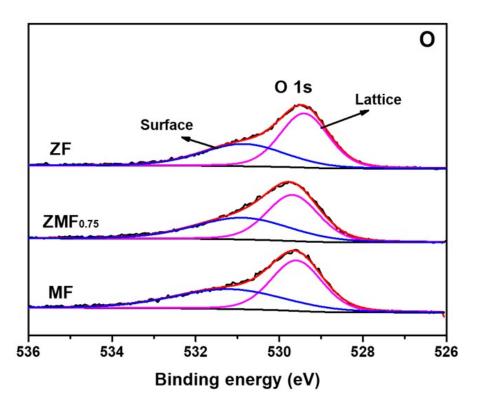


Figure S4. High resolution XPS spectra of O 1s for ZF, ZMF_{0.75} and MF, respectively.

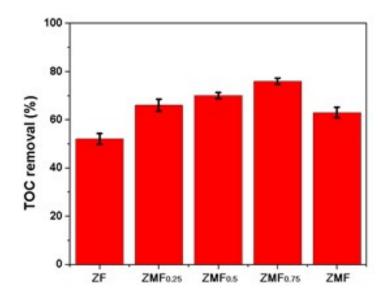


Figure S5. TOC removal based on the as-prepared catalysts in Fenton-like system at 10 hours. The experimental conditions are $[AZX] = 0.5 \text{ mg L}^{-1}$, $[\text{catalyst}] = 0.2 \text{ g L}^{-1}$, $pH = 4.5 \pm 0.2$, $[H_2O_2] = 100 \text{ mM}$.

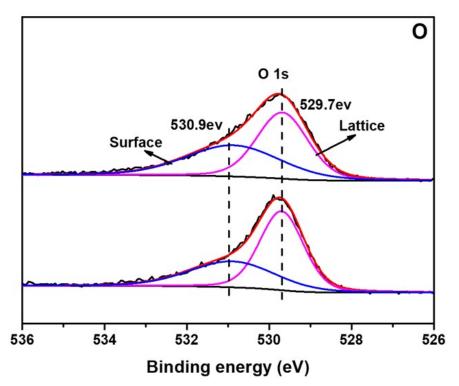


Figure S6. High resolution XPS spectra of O 1s for used $ZMF_{0.75}$ compared with its fresh.

Catalyst		Crystal	a Convetellite size (non)		
	a [Å]	a [Å]	a [Å]	V [Å ³]	^a Crystallite size (nm)
ZF	8.441	8.441	8.441	602.26	9.4
ZMF _{0.25}	8.449	8.449	8.449	603.46	13.9
ZMF _{0.5}	8.467	8.467	8.467	606.94	21.2
ZMF _{0.75}	8.483	8.483	8.483	610.22	20.9
MF	8.505	8.505	8.505	614.14	19.8

Table S1. Characteristics summary of the as-prepared catalysts on crystal lattice parameters and crystal size

^a Calculation by the Scherrer equation based on the facet (311).

Catalyst	Synthesis method	Morphology/ nanostructur	System conditions	Degradation rate	Radical species	Ref.
ZMF _{0.75}	Hydrothermal way	e Nanocluster with nanoparticle size of 5~10 nm	[AZX] = 0.5 mg L ⁻¹ , [catalyst] = 0.2 g L ⁻¹ , [H ₂ O ₂] = 100 mM, pH = 4.5 ± 0.2	99% in 300 min	НО [•] , НО ₂ •	This report
Fe ₃ O ₄	Chemical coprecipitation method	Qusi-spherical particles	[4-chlorocatechol] = 1 mmol L ⁻¹ , [catalyst] = 1 g L ⁻¹ , [H ₂ O ₂] = 50 mM, pH = 6.5 ± 0.2	~99% in 180 min	НО [•] , НО₂ [•] , О₂ [•]	1
MnFe ₂ O ₄	Sol-gel method	Near-nubby morphology	[norfloxacin] = 10 mg L ⁻¹ , [catalyst] = 0.6 g L ⁻¹ , [H ₂ O ₂] = 200 mM, pH = 6.6	90.6% in 180 min	НΟ	2
Mn _{1.07} Fe _{1.93} O ₄	Solvothermal way	Sphere-like morphology	[methylene blue] = 400 mg L ⁻¹ , [catalyst] = 0.5 g L ⁻¹ , [H ₂ O ₂] = 1323 mM, pH at acidic	98.2% in 360 min	НО [•] , НО ₂ •	3

Table S2. A brief of Fenton-like system driven by varied spinel ferrites for organic pollutants degradation

References:

[1] J. He, X. Yang, B. Men, Z. Bi, Y. Pu, D. Wang, Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe₃O₄: Role of the interface, *Chemical Engineering Journal*, 2014, 258, 433-441.

[2] G.Wang, D. Zhao, F. Kou, Q. Ouyang, J. Chen, Z. Fang, Removal of norfloxacin by surface Fenton system (MnFe₂O₄/H₂O₂): Kinetics, mechanism and degradation pathway, *Chemical Engineering Journal*, 2018, 351, 747-755.

[3] M., Li, Q. Gao, T. Wang, Y.S., Gong, B. Han, K.S., Xia, C.G., Zhou, Solvothermal synthesis of $Mn_xFe_{3-x}O_4$ nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity, *Materials & Design*, 2016, 97, 341-348.