Supplementary Material

Influence of Different Microstructures of Cobalt on the Catalytic Activity for Amination of Ethylene Glycol: Comparison of HCP Cobalt and FCC Cobalt

Zhiyong Xie, Hualiang An*, Xinqiang Zhao*, Yanji Wang

Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China

*Corresponding author: Xinqiang Zhao and Hualiang An

Postal address:

School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin, 300130, China E-mail address: zhaoxq@hebut.edu.cn, anhl@hebut.edu.cn

I. Table S1. Catalytic performance of Co and Ni for amination of EG.

2. Table S2. Characterization of fcc-Co and hcp-Co catalyst.

3. Table S3. The selectivity of products for catalytic amination of EG.

4. Table S4. Entropic contribution of EG dehydrogenation process.

5. Table S5. Effect of initial hydrogen pressure on the amination of ethylene glycol.

6. Table S6. Effect of reaction time on EG amination at different temperature.

7. Fig.S1. XRD patterns of fcc-Co and used fcc-Co catalysts.

8. Fig.S2. Images of transition states.

9. Fig.S3. Comparison of two cyclization pathways to piperazine.

10. Fig.S4. TEM images of hcp-Co (100-300nm) catalysts (co-precipitation method).

11. Fig.S5. XRD patterns of hcp-Co (100-300nm) catalysts (co-precipitation method).

Table S1 Catalytic performance of Co and Ni for amination of EG

Catalyst	Temp	X _{EG}	Yield (Select	Yield (Selectivity) (%)				
	(°C)	(%)	MEA	EDA	PIP	MEA+EDA		
hcp-Co (50-100 nm)	185	24.8	7.7 (31.1)	2.5 (10.1)	1.0 (3.9)	10.2 (41.2)		
hcp-Co (100-300 nm)	185	25.2	8.2 (32.5)	2.5 (9.7)	1.0 (4.0)	10.7 (42.2)		
fcc-Ni (100-200 nm)	185	13.7	1.8 (13.0)	0.1 (0.5)	0.2 (1.6)	1.9 (13.5)		

Hcp-Co (50-100 nm): this work. Metal fcc-Ni and hcp-Co catalysts (100-300 nm) were prepared by co-precipitation method ¹.

Reaction conditions: Initial hydrogen pressure =3 MPa, t=12 h, $m_{(EG)}$ =1.12 g, $m_{(NH3)}$ =10 g, a weight percentage of catalyst=10%.

X: conversion; EG: ethylene glycol; MEA: monoethanolamine; EDA: ethylenediamine; PIP: piperazine;

Catalyst	H ₂ adsorbed (µmol g ⁻¹)	Co Dispersion (%)	BET surface area $(m^2 g^{-1})$	D ^[a] (µmol g ⁻¹)
fcc-Co	85.6	0.34	4.56	57.1
hcp-Co	84.3	0.33	4.09	56.2

Table S2 Characterization of fcc-Co and hcp-Co catalyst.

[a] D represents the concentration of surface active sites derived from H_2 and O_2 titration.

			Selectivity (%)							
Catalvat	Temp	\mathbf{X}_{EG}								Other
Catalyst	(°C)	(%)	MEA	EDA	PIP	AEP	HEP	DETA	HEEDA	degradation
										products
fcc-Co	175	24.8	33.5	14.0	6.7	1.7	1.6	0.6	2.7	39.2
	185	33.9	28.2	15.3	13.2	1.4	1.4	2.3	1.6	36.6
	195	35.4	24.5	14.5	16.2	1.3	1.2	1.6	1.6	39.1
hcp-Co	175	10.6	33.7	0.4	1.5	4.5	6.0	1.9	6.0	46.0
	185	24.8	31.1	10.1	3.9	1.7	2.6	0.8	3.2	46.6
	195	35.0	26.6	9.0	9.9	1.7	2.0	0.9	1.4	48.5

Table S3 The selectivity of products for catalytic amination of EG.

X: conversion; EG: ethylene glycol; MEA: monoethanolamine; EDA: ethylenediamine; PIP: piperazine; AEP: aminoethylpiperazine; HEP: hydroxyethylpiperazine; DETA: diethylenetriamine; HEEDA: hydroxyethylethylenediamine; Other degradation products: carbon monoxide, methanol, methylamine, methane, formaldehyde.

Intermediate or	TS (eV)								
transition state	Co (111)	Co (0001)	Co (10-10)	Co (10-11)					
OHCH ₂ CH ₂ OH	0.24378	0.24771	0.17619	0.14631					
TS1	0.19826	0.30146	0.20310	0.21594					
OHCH ₂ CH ₂ O	0.20837	0.21173	0.25479	0.20344					
TS3	0.43394	0.44093	0.30483	0.20911					
OHCH ₂ CHO	0.10520	0.10690	0.12330	0.13516					

Table S4 Entropic contribution of EG dehydrogenation process (T=458 K).

		Initial		Yield (Selectivity) (%)				
Entry Catalyst		hydrogen X _{EG}						
	pressure	(%)	MEA	EDA	PIP	MEA+EDA		
		/MPa						
1	hcp-Co	1	18.8	6.3 (33.4)	2.3 (12.2)	0.8 (4.2)	8.6 (45.6)	
2	hcp-Co	2	22.7	7.3 (31.9)	2.5 (11.0)	0.8 (3.6)	9.8 (42.9)	
3	hcp-Co	3	25.2	8.2 (32.5)	2.5 (9.7)	1.0 (4.0)	10.7 (42.2)	
4	hcp-Co	4	24.9	8.1 (32.6)	2.3 (9.5)	0.9 (3.7)	10.4 (42.1)	

Table S5 Effect of initial hydrogen pressure on the amination of ethylene glycol.

Reaction conditions: T=185 °C, t=12 h, $m_{(EG)}$ =1.12 g, $m_{(NH3)}$ =10 g, $m_{(H2O)}$ =6 g , a weight

percentage of catalyst=10%.

X: conversion; EG: ethylene glycol; MEA: monoethanolamine; EDA: ethylenediamine; PIP:

piperazine;

Catalyst	Temp	Time	X _{EG}	Yield (Selectivity) (%)					
Cataryst	(°C)	(\mathbf{h})	(%)	MEA	EDA	PIP	MEA+EDA		
fcc-Co	175	4	9.7	4.1 (41.8)	0.1 (0.5)	0.3 (2.7)	4.2 (42.3)		
	175	8	18.6	8.7 (46.8)	2.3 (12.1)	2.3 (12.2)	11.0 (58.9)		
	175	12	24.8	8.3 (33.5)	3.5 (14.0)	1.7 (6.7)	11.8 (47.5)		
	185	4	13.2	7.8 (58.9)	0.7 (5.3)	0.7 (5.1)	8.5 (64.2)		
	185	8	25.6	10.1 (39.3)	3.1 (11.9)	1.3 (5.0)	13.2 (51.2)		
	185	12	33.9	9.6 (28.2)	5.2 (15.3)	4.5 (13.2)	14.8 (43.5)		
	195	4	27.1	7.2 (26.6)	2.9 (10.5)	2.7 (10.0)	10.1 (37.1)		
	195	8	29.7	10.1 (34.0)	3.3 (11.0)	3.2 (10.8)	13.4 (45.0)		
	195	12	35.4	8.7 (24.5)	5.1 (14.5)	5.7 (16.2)	13.8 (39.0)		
hcp-Co	175	4	6.6	2.7 (40.3)	0.1 (0.6)	0.2 (2.9)	2.8 (40.9)		
	175	8	9.3	3.4 (36.4)	0.1 (0.5)	0.1 (1.4)	3.5 (36.9)		
	175	12	10.6	3.6 (33.7)	< 0.1(0.4)	0.2 (1.5)	3.6 (34.1)		
	185	4	7.5	3.3 (44.1)	0.1 (1.1)	1.5 (19.9)	3.4 (45.2)		
	185	8	17.8	8.2 (46.0)	1.2 (6.8)	1.1 (6.4)	9.4 (52.8)		
	185	12	24.8	7.7 (31.1)	2.5 (10.1)	1.0 (3.9)	10.2 (41.2)		
	195	4	18.7	5.8 (30.7)	0.7 (3.8)	0.5 (2.8)	6.5 (34.5)		
	195	8	26.6	8.3 (31.0)	2.2 (8.1)	1.1 (4.2)	10.5 (39.1)		
	195	12	35.0	9.3 (26.6)	3.2 (9.0)	3.5 (9.9)	12.5 (35.6)		

Table S6 Effect of reaction time on EG amination at different temperature.

Reaction conditions: Initial hydrogen pressure=3 MPa, $m_{(EG)}$ =1.12 g, $m_{(NH3)}$ =10 g, $m_{(H2O)}$ =6 g, a

weight percentage of catalyst=10%.

X: conversion; EG: ethylene glycol; MEA: monoethanolamine; EDA: ethylenediamine; PIP:

piperazine.

Fig.S1 XRD patterns of fcc-Co and used fcc-Co catalysts.

Fig.S2. Images of transition states

Fig.S3. Comparison of two cyclization pathways to piperazine.

A: Ethanolamine self-condensation reaction: initial hydrogen pressure=3 MPa, $m_{(MEA)} = 10$ g, m (H2O) =70 g, a weight percentage of catalyst (hcp-Co) =10%.

B: Ethylenediamine and ethylene glycol reaction: initial hydrogen pressure=3 MPa, $m_{(EG)} = 5.08$ g, $m_{(EDA)} = 4.92$ g $m_{(H2O)} = 70$ g, a weight percentage of catalyst (hcp-Co) = 10%.

Fig.S4. TEM images of hcp-Co (100-300 nm) catalysts (co-precipitation method).

Fig.S5. XRD patterns of hcp-Co (100-300 nm) catalysts (co-precipitation method).

References

1 A. Fischer, M. Maciejewski, T. Bürgi, T. Mallat and A. Baiker, J. Catal., 1999, 183, 373-383.