Controllable assembly of Fe3O4-Fe3C@MC by in-situ doping of Mn for CO² selective hydrogenation to light olefins

Pengze Zhang, Jingyu Yan, Fei Han, Xianliang Qiao, Qingxin Guan*, and Wei Li*

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key

Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai

University, No. 94 Weijin Road, Tianjin 300071, P. R. China.

1. Materials

Fe(NO₃)₃·9H₂O (98%), Mn(NO₃)₂·6H₂O (98%), and KNO₃ (99%) were purchased from Aladdin Ltd. (Shanghai, China). $Zr(NO_3)_4.5H_2O$ was purchased from Xiya Chemical Technology Co., Ltd. $(NH_4)_{10}W_{12}O_{41} \sim xH_2O$ was purchased from Sigma– Aldrich (Shanghai) Trading Co., Ltd. Phenol (98%) and ethanol (99%) were purchased from Shanghai Merrill Chemical Technology Co., Ltd. (Shanghai, China). Formaldehyde (37%) was purchased from Xiya Chemical Technology (Shandong) Co., Ltd. (Linyi, China). Polyether F127 (molecular weight = 13000) was purchased from Tianjin Solomon Biotechnology Co., Ltd. (Tianjin, China). Boric acid (98%) was purchased from Tianjin Bohua Chemical Reagent Co., Ltd. (Tianjin, China). Phenolic resin (M≈500) was synthesized according to the literature [1].

2. Catalyst characterization

The structures of Fe-based catalysts were reported be changed during $CO₂$ hydrogenation reaction, so the catalysts of characterization were performed after the catalytic performance evaluation.^{2,3} The Fe content of the catalyst was analysed by Xray fluorescence spectroscopy (Riguku supermini 200), with boric acid as a binder. The analysis of the specific surface area and pore size distribution of the catalyst was performed on a Microtrac BEL BELsorp-Max. Powder X-ray diffraction (XRD) of the catalyst was performed on a Riguku SmartLab 9 kW with a Cu Kα radiation source. The catalysts were reduced in a H_2 atmosphere at 350 °C before being characterized. The morphology of the catalyst was characterized by high-resolution field emission transmission electron microscopy (HR-TEM) and high-angle annular dark fieldscanning transmission electron microscopy (HAADF–STEM) on an FEI Talos F200x with Super X.

 H_2 temperature-programmed reduction (H_2 -TPR), CO_2 temperature-programmed desorption (CO_2 -TPD), and H₂ temperature-programmed desorption (H₂-TPD) were tested on a Micrometritics Autochem 2920. The H_2 -TPR and CO_2 -TPD tests were conducted after the sample was reduced at 350 °C with 50 mL/min 10% H_2/Ar mixed gas for 1.0 h and then purged with Ar (50 mL/min) for 1.0 h. The H_2 -TPR test was conducted after the sample was heated at $350 \degree C$ with Ar (50 mL/min) for 1.0 h. The temperature program was increased from 50 to 800 °C at 10 °C/min. The chemical state of surface atoms was investigated by X-ray photoelectron spectroscopy (XPS) on a Thermo Scientific K-Alpha instrument equipped with an Al Kα source. The binding energy was calibrated using adventitious carbon (C 1 s peak at 284.8 eV). The catalysts were reduced in a H_2 atmosphere at 350 °C before being characterized.

3. Catalytic activity evaluation

The $CO₂$ hydrogenation reaction was performed in a fixed bed reactor (7.0 mm inner diameter), and the details of the reactor are given in Figure S1. Typically, 0.2 g catalyst (40–60 mesh) was used unless otherwise described. Before the activity evaluation, the catalyst was prereduced at H₂: 25 mL/min, 350 °C for 1.0 h. Subsequently, N₂ (50) mL/min) was used to purge the reactor, and the temperature of the reactor changed to meet the reaction requirements. Hereafter, the mixed gas of H_2 , CO_2 , and Ar $(CO₂/H₂/Ar = 24:72:4)$ was fed into the reactor, and the pressure increased to 3.0 MPa gradually. All reacted gas mixtures were detected by online gas chromatography (Fuli GC9790II). $CO₂$, CO , $CH₄$, and Ar were analysed on a TCD detector with Haysep C and TDX–01 packed columns, and hydrocarbons and carbon hydroxides were analysed on an FID detector with an RB-1 capillary column. The date of GC is shown in Figure S13. The hydrocarbon distribution was calculated based on the total carbon moles (Cmole%). The carbon balance of the products was calculated to be above 95%. The catalytic performance was analysed after 8.0 hours of the reaction.

 $CO₂$ conversion was calculated using equation (1):

$$
CO_2 \text{ Conversion } (\%) = \frac{CO_{2 \text{ in}} - CO_{2 \text{ out}}}{CO_{2 \text{ in}}} \times 100\%
$$
 (1)

where the $CO_{2 \text{ in }}$ and $CO_{2 \text{ out }}$ represented the volume of flow in and out of the reactor. CO selectivity was calculated by equation (2):

$$
CO Selectivity (%) = \frac{CO_{out}}{CO_{2 in} - CO_{2 out}} \times 100\%
$$
 (2)

where CO _{out} represents the CO volume of flow out of the reactor.

The selectivity of hydrocarbons in the whole hydrocarbon was calculated according

to equation (3):

$$
C_i\,hydrocarbon\,selectivity\,(C-mol\%) = \frac{Mole\,of\,C_i\,hydrocarbon\times i}{\sum_{i=1}^{n}Mole\,of\,C_i\,hydrocarbon\times i}
$$

(3)

Figure S1. The schematic diagram of catalytic performance evaluation device.

Figure S2. The HR-TEM images and HAADF-STEM images of 1.2Fe@MC.

Figure S3. The HR-TEM images and HADDF-STEM images of 20%Zr-1.2Fe@MC.

Figure S4. The HR-TEM images and HADDF-STEM images of 20%W-1.2Fe@MC.

Figure S5. (a) The N₂-adsorption and desorption curve of 1.2Fe@MC, 20%Mn-1.2Fe $@MC$, 20%Zr-1.2Fe $@MC$, and 20%W-1.2Fe $@MC$. (b) The Pore size of

1.2Fe@MC, 20%Mn-1.2Fe@MC, 20%Zr-1.2Fe@MC, and 20%W-1.2Fe@MC.

Figure S6. The catalytic performance of 1.2Fe@MC, 20%Mn-1.2Fe@MC, 20%Zr-1.2Fe@MC, and 20%W-1.2Fe@MC. Reaction conditions: 320 °C, 3.0MPa, GHSV = 12000 mL/ g_{cat}/h .

Figure S7. The XRD patterns of 30%Mn-1.2Fe@MC, 30%Mn-1.2Fe@MC+K.

Figure S8. The Mn 2p XPS of 20%Mn-1.2Fe@MC

Table S1. The results of XPS peak fit

Catalysts	$S_{BET}(m^2/g)$	Mean pore diameter (nm)	Pore volume $\text{cm}^3\text{/g}$)	
1.2Fe	204.5	5.3	0.37	
20%Mn-1.2Fe	270.3	4.9	0.33	
20% Zr-1.2Fe	299.4	3.39	0.35	
$20\%W-1.2Fe$	296.5	6.9	0.32	
10%Mn-1.2Fe	305.6	4.53	0.35	
30%Mn-1.2Fe	371.3	2.9	0.27	

Table S2. The textural properties of catalysts

Table S3. The result of element Analysis

Catalyst	\mathcal{C}	Ω	Fe	Mn	Zr	W
1.2Fe	92.23	7.24	15.44	-	-	
20% Mn	88.81	10.4	13.53	4.41	-	
30%Mn	$\overline{}$	-	12.66	5.88	-	
20% Zr	90.33	9.7	11.72	\overline{a}	6.02	-
20% W	91.28	8.27	10.10	-		8.74

Fe, Mn, Zr, and W (wt.%) element analysis was determined by X-ray fluorescence spectroscopy.

The C and O (atom. %) element analysis was decided by X-ray photoelectron spectroscopy.

Reference

[1] Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang; Li Z., C. Yu, B. Tu; D. Zhao, *Angew. Chem. Int. Ed.,* 2005**, 44**, 7053.

[2] E. de Smit, F. Cinquini, A. M. Beale, O. V. Safonova, W. van Beek, P. Sautet and B. M. Weckhuysen, *J. Am. Chem. Soc.*, 2010, **132**, 14928.

[3] S. Li, J. Yang, C. Song, Q. Zhu, D. Xiao and D. Ma, *Adv. Mater.*, 2019, **31**, e1901796.