Controllable assembly of Fe₃O₄-Fe₃C@MC by in-situ doping of Mn for CO₂ selective hydrogenation to light olefins

Pengze Zhang, Jingyu Yan, Fei Han, Xianliang Qiao, Qingxin Guan*, and Wei Li*

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key

Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai

University, No. 94 Weijin Road, Tianjin 300071, P. R. China.

1. Materials

Fe(NO₃)₃·9H₂O (98%), Mn(NO₃)₂·6H₂O (98%), and KNO₃ (99%) were purchased from Aladdin Ltd. (Shanghai, China). Zr(NO₃)₄·5H₂O was purchased from Xiya Chemical Technology Co., Ltd. (NH₄)₁₀W₁₂O₄₁~xH₂O was purchased from Sigma– Aldrich (Shanghai) Trading Co., Ltd. Phenol (98%) and ethanol (99%) were purchased from Shanghai Merrill Chemical Technology Co., Ltd. (Shanghai, China). Formaldehyde (37%) was purchased from Xiya Chemical Technology (Shandong) Co., Ltd. (Linyi, China). Polyether F127 (molecular weight = 13000) was purchased from Tianjin Solomon Biotechnology Co., Ltd. (Tianjin, China). Boric acid (98%) was purchased from Tianjin Bohua Chemical Reagent Co., Ltd. (Tianjin, China). Phenolic resin (M≈500) was synthesized according to the literature [1].

2. Catalyst characterization

The structures of Fe-based catalysts were reported be changed during CO₂ hydrogenation reaction, so the catalysts of characterization were performed after the

catalytic performance evaluation.^{2,3} The Fe content of the catalyst was analysed by Xray fluorescence spectroscopy (Riguku supermini 200), with boric acid as a binder. The analysis of the specific surface area and pore size distribution of the catalyst was performed on a Microtrac BEL BELsorp-Max. Powder X-ray diffraction (XRD) of the catalyst was performed on a Riguku SmartLab 9 kW with a Cu K α radiation source. The catalysts were reduced in a H₂ atmosphere at 350 °C before being characterized. The morphology of the catalyst was characterized by high-resolution field emission transmission electron microscopy (HR-TEM) and high-angle annular dark fieldscanning transmission electron microscopy (HAADF–STEM) on an FEI Talos F200x with Super X.

 H_2 temperature-programmed reduction (H_2 -TPR), CO₂ temperature-programmed desorption (CO₂-TPD), and H_2 temperature-programmed desorption (H_2 -TPD) were tested on a Micrometritics Autochem 2920. The H_2 -TPR and CO₂-TPD tests were conducted after the sample was reduced at 350 °C with 50 mL/min 10% H_2 /Ar mixed gas for 1.0 h and then purged with Ar (50 mL/min) for 1.0 h. The H_2 -TPR test was conducted after the sample was heated at 350 °C with Ar (50 mL/min) for 1.0 h. The H₂-TPR test was conducted after the sample was heated at 350 °C with Ar (50 mL/min) for 1.0 h. The temperature program was increased from 50 to 800 °C at 10 °C/min. The chemical state of surface atoms was investigated by X-ray photoelectron spectroscopy (XPS) on a Thermo Scientific K-Alpha instrument equipped with an Al K α source. The binding energy was calibrated using adventitious carbon (C 1 s peak at 284.8 eV). The catalysts were reduced in a H_2 atmosphere at 350 °C before being characterized.

3. Catalytic activity evaluation

The CO₂ hydrogenation reaction was performed in a fixed bed reactor (7.0 mm inner diameter), and the details of the reactor are given in Figure S1. Typically, 0.2 g catalyst (40–60 mesh) was used unless otherwise described. Before the activity evaluation, the catalyst was prereduced at H₂: 25 mL/min, 350 °C for 1.0 h. Subsequently, N₂ (50 mL/min) was used to purge the reactor, and the temperature of the reactor changed to meet the reaction requirements. Hereafter, the mixed gas of H₂, CO₂, and Ar (CO₂/H₂/Ar = 24:72:4) was fed into the reactor, and the pressure increased to 3.0 MPa gradually. All reacted gas mixtures were detected by online gas chromatography (Fuli GC9790II). CO₂, CO, CH₄, and Ar were analysed on a TCD detector with Haysep C and TDX–01 packed columns, and hydrocarbons and carbon hydroxides were analysed on an FID detector with an RB-1 capillary column. The date of GC is shown in Figure S13. The hydrocarbon distribution was calculated based on the total carbon moles (C-mole%). The carbon balance of the products was calculated to be above 95%. The catalytic performance was analysed after 8.0 hours of the reaction.

 CO_2 conversion was calculated using equation (1):

$$CO_2 Conversion (\%) = \frac{CO_{2 in} - CO_{2 out}}{CO_{2 in}} \times 100\%$$
 (1)

where the $CO_{2 \text{ in}}$ and $CO_{2 \text{ out}}$ represented the volume of flow in and out of the reactor. CO selectivity was calculated by equation (2):

$$CO Selectivity (\%) = \frac{CO_{out}}{CO_{2 in} - CO_{2 out}} \times 100\%$$
(2)

where CO _{out} represents the CO volume of flow out of the reactor.

The selectivity of hydrocarbons in the whole hydrocarbon was calculated according

to equation (3):

$$C_{i} hydrocarbon selectivity (C - mol\%) = \frac{Mole of C_{i} hydrocarbon \times i}{\sum_{i=1}^{n} Mole of C_{i} hydrocarbon \times i} \times 100\%$$

Figure S1. The schematic diagram of catalytic performance evaluation device.

Figure S2. The HR-TEM images and HAADF-STEM images of 1.2Fe@MC.

Figure S3. The HR-TEM images and HADDF-STEM images of 20%Zr-1.2Fe@MC.

Figure S4. The HR-TEM images and HADDF-STEM images of 20%W-1.2Fe@MC.

Figure S5. (a) The N₂-adsorption and desorption curve of 1.2Fe@MC, 20%Mn-1.2Fe@MC, 20%Zr-1.2Fe@MC, and 20%W-1.2Fe@MC. (b) The Pore size of

1.2Fe@MC, 20%Mn-1.2Fe@MC, 20%Zr-1.2Fe@MC, and 20%W-1.2Fe@MC.

Figure S6. The catalytic performance of 1.2Fe@MC, 20%Mn-1.2Fe@MC, 20%Zr-1.2Fe@MC, and 20%W-1.2Fe@MC. Reaction conditions: 320 °C, 3.0MPa, GHSV = 12000 mL/g_{cat}/h.

Figure S7. The XRD patterns of 30%Mn-1.2Fe@MC, 30%Mn-1.2Fe@MC+K.

Figure S8. The Mn 2p XPS of 20%Mn-1.2Fe@MC

Table S1. The results of XPS peak fit

Fe	2p3/2	core
ге	2p3/2	core

Catalyst	BE (eV)	Concentration (atom%)	FeC _x /Fe ₂ O ₃	
1.2Fe@OMC	707.2	8.0	-	
	708.3	2.7		
	711.0 73.1			
	713.0	16.1		
20%Mn-1.2Fe	707.2	10.5		
	708.3	08.3 5.1		
	711.0 67.5		0.18	
	713.0	17.0	_	
20%Zr-1.2Fe	707.1	5.1		
	1.2Fe 708.1 2.5 710.8 74.2		- 0.08	
	20%W-1.2Fe	707.3	4.7	
V-1.2Fe 708.3 2.0 710.6 64.6		0.07		
				712.6
30%Mn-1.2Fe		707.2	5.0	
	708.3	0.0	0.05	
	711	68.1	_	

Catalysts	$S_{BET}(m^2/g)$	Mean pore diameter(nm)	Pore volume(cm ³ /g)	
1.2Fe	204.5	5.3	0.37	
20%Mn-1.2Fe	270.3	4.9	0.33	
20%Zr-1.2Fe	299.4	3.39	0.35	
20%W-1.2Fe	296.5	6.9	0.32	
10%Mn-1.2Fe	305.6	4.53	0.35	
30%Mn-1.2Fe	371.3	2.9	0.27	

Table S2. The textural properties of catalysts

 Table S3. The result of element Analysis

Catalyst	С	0	Fe	Mn	Zr	W
1.2Fe	92.23	7.24	15.44	-	-	-
20%Mn	88.81	10.4	13.53	4.41	-	-
30%Mn	-	-	12.66	5.88	-	-
20%Zr	90.33	9.7	11.72	-	6.02	-
20%W	91.28	8.27	10.10	-	-	8.74

Fe, Mn, Zr, and W (wt.%) element analysis was determined by X-ray fluorescence spectroscopy.

713

The C and O (atom. %) element analysis was decided by X-ray photoelectron spectroscopy.

Reference

[1] Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang; Li Z., C. Yu, B. Tu; D. Zhao, Angew.*Chem. Int. Ed.*, 2005, 44, 7053.

[2] E. de Smit, F. Cinquini, A. M. Beale, O. V. Safonova, W. van Beek, P. Sautet andB. M. Weckhuysen, J. Am. Chem. Soc., 2010, 132, 14928.

[3] S. Li, J. Yang, C. Song, Q. Zhu, D. Xiao and D. Ma, Adv. Mater., 2019, 31, e1901796.