Fundamental Understanding of the Synthesis of Well-Defined Supported Non-noble Metal Intermetallic Compounds Nanoparticles

Yuanjun Song,[†] Yang He,[‡] and Siris Laursen^{*,¶}

[†]Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China

‡Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

¶Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States

> E-mail: slaursen@utk.edu Phone: +1 865 9745786

Content

Figure S1. EDX-mappings of SiO₂ supported a) Ni₃Ga and b) Ni₅Ga₃ (nominal loadings of Ni:Ga were 3:1 and 5:3 respectively), which were synthesized using incipient wetness impregnation method and reduced at 700°C with pure H₂ for 2hrs. The elements were color coded as: Ni (red), Ga (green), and Si (blue).

Figure S2. Phase pure supported IMCs synthesized in this study: a) SiO₂ supported Ni₃Ga, Ni₅Ga₃, NiGa, and Ni₂Ga₃; b) Al₂O₃ supported Ni₃Ga, Ni₅Ga₃, NiGa, and Ni₂Ga₃; c) SiO₂ supported CoGa; and d) SiO₂ supported Ni₂In and Ni₂In₃.

Table S1. Summary of percentage of targeted phase (NiGa) of reduced 1:1 Ni:Ga/C, 1:1 Ni:Ga/SiO₂, and 1:1 Ni:Ga/Al₂O₃ with different H₂ chemical potential. The minimum required H₂ chemical potential to produce pure NiGa phase for each catalyst is highlighted with red color.

Figure S1: EDX-mappings of SiO₂ supported a) Ni₃Ga and b) Ni₅Ga₃ (nominal loadings of Ni:Ga were 3:1 and 5:3 respectively), which were synthesized using incipient wetness impregnation method and reduced at 700°C with pure H₂ for 2hrs. The elements were color coded as: Ni (red), Ga (green), and Si (blue).

Figure S2: Phase pure supported IMCs synthesized in this study: a) SiO_2 supported Ni_3Ga , Ni_5Ga_3 , NiGa, and Ni_2Ga_3 ; b) Al_2O_3 supported Ni_3Ga , Ni_5Ga_3 , NiGa, and Ni_2Ga_3 ; c) SiO_2 supported CoGa; and d) SiO_2 supported Ni_2In and Ni_2In_3 .

Table 1: Summary of percentage of targeted phase (NiGa) of reduced 1:1 Ni:Ga/C, 1:1 Ni:Ga/SiO₂, and 1:1 Ni:Ga/Al₂O₃ with different H₂ chemical potential. The minimum required H₂ chemical potential to produce pure NiGa phase for each catalyst is highlighted with red color.

Catalyst	H_2 Chemical Potential					
	2%	5%	10%	30%	50%	100%
1:1 NiGa/C	68%	100%	NA	NA	NA	100%
$1:1 \text{ NiGa/SiO}_2$	0	55%	100%	NA	NA	100%
1:1 NiGa/Al ₂ O ₃	0	0	0	0	100%	100%