Ultrathin g-PAN/PANI encapsulated Cu nanoparticles decorated on SrTiO₃ with high stability and as an efficient photocatalytic H₂ evolution and degradation of 4-nitrophenol

Nan Sun, ‡ Yong Zhang, ‡ Xinru Li, Yuhan Jing, Zhengdong Zhang, Yu Gao, Jianqi Liu,

Honglin Tan,* Xiaoming Cai, Jinming Cai

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, PR China

‡ These authors contributed equally to this work.

*Corresponding Authors: Dr. Honglin Tan, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, PR China.

Email: <u>852419171@qq.com</u>

Fig. S1 Structure and synthesis process of g-PAN.

Fig. S2 (a-b) SEM image (c) TEM of Cu@CI/STO-60ml (The illustration shows the Cu NPs particle size); (c-i) corresponding element distribution.

Fig. S3 (a) TEM images of the Cu@CI/STO-10ml structure; (b)

HRTEM images of the Cu@CI/STO-10ml structure.

Fig. S4 (a) Complete survey spectrum of the Cu@CI/STO, (b) XPS spectra of C 1s.

Fig. S5 UV-Vis absorption spectra of g-PAN.

Fig. S6 Tauc plot of SrTiO₃.

Fig. S7 Tauc plot of Valence band XPS spectrum of SrTiO₃.

Fig. S8 Schematic illustration of energy band position in Cu/SrTiO₃ composite nanostructure.

Fig. S9 UV-vis absorbance spectra during the 4-nitrophenol reduction, in presence of (a) Cu@CI/STO, (b) Cu/STO.
(c)Schematic diagram of the enhancement of 4-NP catalytic reduction on Cu@CI/STO by the thermal effect of SPR excitation when NaBH₄ is used as the electron donor.

Fig. 10 The UV-Vis absorption spectrum of 4-nitrophenol reduction in the presence of Cu@CI/STO after being placed in the air for 1 month.

Fig. 11 (a) UV–vis absorbance spectra during the 4-nitrophenol reduction in presence of Cu@CI/STO under sunlight; (b) with or without Cu@CI/STO temperature change with time at different times under sunlight; (c) the image is reflected at different times

under sunlight.

Fig. 12 Reaction for 20min at (a) different locations and (b)

corresponding UV-vis absorbance spectra.

Table. S1 Different materials for metal-driven visible-light photocatalytic hydrogen

 evolution at present.

Samples	Test condition	Hydrogen	Reference
		production	
		reaction	
		(µmol∙g ⁻¹ •h ⁻¹)	
STO	10% TEOA / 1% Pt /(λ>420	5.31	
	nm)		
Au ₃ Cu/STO	20% methanol/ 0.5% Pt /(λ >	76.3	1
	400 nm)		
Au nanostar@TiO ₂	20% methanol /(λ > 420 nm)	76.6	2
Cu@C/STO	20% methanol/ 0.5% Pt /(λ >	255.3	3
	400 nm)		
Cu@g-PAN/STO	10% TEOA / 1% Pt /(λ > 420	265.25	
	nm)		
Cu@CI/STO	10% TEOA / 1% Pt /(λ>420	371	This work
	nm)		

References

 $1~\mathrm{Xz}~\mathrm{A}$, Ao F B , Xin C A , et al. Catalysis Today. 2019, **335** 166-172.

2 B. Liu, Y. Jiang, Y. Wang, S. Shang, Y. Ni, N. Zhang, M. Cao, C. Hu, Catal.

Sci. Technol. 2018, **8** 1094-1103.

3 Ren L , Tong L , Yi X , et al. Chemical Engineering Journal. 2020, **390** 124558-.