Supporting Information

Coke-resistant Ni-based bimetallic catalysts for dry reforming methane:

effects of indium on the Ni/Al₂O₃ catalyst

Chuanshen Wang, Tongming Su, Zuzeng Qin*, and Hongbing Ji*

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource

Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China

^{*} Corresponding author. E-mail: qinzuzeng@gxu.edu.cn (Z. Q.); jihb@mail.sysu.edu.cn (H. J.)

Experimental

Catalysts characterization

 H_2 temperature-programmed reduction (H_2 -TPR) were performed on an AMI-300 catalyst characterization system equipped with the TCD detector was set to 100 °C and the bridge current was set to 75 mA. 50 mg samples were pre-treated in an Ar flow (30 ml min⁻¹) for 1 h at 300 °C to remove water and impurities in the catalyst, then switch to 10 vol% H_2 /Ar (30 ml min⁻¹) by valve actuation and wait for the baseline to stabilize. The temperature is increased from 50 °C to 1000 °C with a temperature ramping rate of 10 °C min⁻¹, the tail gas is fed into the TCD detector to record the data.

CO₂ temperature programmed desorption (CO₂-TPD) conducted using AMI-300 catalyst characterization system equipped with the TCD detector was set to 100 °C and the bridge current was set to 135 mA. 100 mg sample were pre-treated in an Ar flow (30 ml min⁻¹) at 300 °C for 1 h, then warmed to 800 °C for reduction for 1 h. After the reduction, the system was cooled to 50 °C and switched to CO₂ (30 ml min⁻¹) for static adsorption for 1 hour until saturation. Afterwards, the sample was purged with He (30 ml min⁻¹) until baseline stable, later the temperature was risen from 50 °C to 800 °C with a temperature ramping rate of 10 °C min⁻¹, the tail gas is fed into the TCD detector to record the data.

NH₃ temperature programmed desorption (NH₃-TPD) also conducted using AMI-300 catalyst characterization system equipped with the TCD detector was set to 100 °C and the bridge current was set to 135 mA. Samples (100 mg) were pre-treated were pre-treated in an Ar flow (30 ml min⁻¹) at 300 °C for 1 h, then warmed to 800 °C for reduction for 1 h. After the reduction, the system was cooled to 100 °C and switched to NH₃ (30 ml min⁻¹) for static

adsorption for 1 hour until saturation. Afterwards, the sample was purged with He (30 ml min⁻¹) until baseline stable, later the temperature was risen from 100 °C to 800 °C with a temperature ramping rate of 10 °C min⁻¹, the tail gas is fed into the TCD detector to record the data.

 H_2 chemisorption were performed on an AMI-300 catalyst characterization system equipped with the TCD detector was set to 100 °C and the bridge current was set to 75 mA. 200 mg sample were pre-treated in an Ar flow (30 ml min⁻¹) at 300 °C for 1 h, then warmed to 800 °C for reduction for 1 h. After the reduction, the system was cooled to 50 °C and was purged with Ar (30 ml min⁻¹) until baseline stable. Afterwards, switched to 10 % H₂/Ar is pulsed in 20 times and the tail gas enters the TCD detector to collect data. The difference between the measured stable H₂ absorption peak area and the absorption peak area of each pulse is the total amount of H₂ chemisorbed and the degree of dispersion of the active metal on the catalyst surface can be obtained by calculation. The calculation formula is shown in Eq (4).

Sample	Οα		O_{β}		Ογ	
	BE (eV)	Area (%)	BE (eV)	Area (%)	BE (eV)	Area (%)
Ni/Al ₂ O ₃	531.78	73.5	533.24	19.9	534.27	6.60
In/Al ₂ O ₃	531.15	55.6	532.17	34.4	533.38	10.0
3Ni-2In/Al ₂ O ₃	530.73	64.9	531.92	29.9	533.25	5.20

Table S1 The fitting results of surface oxygen species on the basis of O 1s spectra over the reduced

catalysts.

Sample	NH_3 desorption (µmol/g _{cat})
Al_2O_3	315
Ni/Al ₂ O ₃	468
In/Al ₂ O ₃	302
4Ni-1In/Al ₂ O ₃	437
3Ni-2In/Al ₂ O ₃	407
2Ni-3In/Al ₂ O ₃	406
1Ni-4In/Al ₂ O ₃	390

Table S2 NH_3 desorption amount of the support and catalysts

Catalyst	WHSV CH /CO /inert gas		CH ₄ conversion	Temperature	Deference	
	$(mL h^{-1} g_{cat}^{-1})$	CH4/CO ₂ /ment gas	(%)	(°C)	Kelerence	
Ni/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1N ₂	78.8	700		
In/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1N ₂	9.1	700		
1Ni-4In/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1N ₂	6.5	700	This	
2Ni-3In/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1N ₂	21.6	700	work	
3Ni-2In/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1N ₂	91.1	700		
4Ni-1In/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1N ₂	66.8	700		
In _{0.5} Ni@SiO ₂	18000	1CH ₄ /1CO ₂	92	800	1	
Ni-In/Al ₂ O ₃	21000	49.5CH ₄ /49.5CO ₂ /1Ar	28	650	2	
Ni-In/Ce-Al ₂ O ₃	21000	49.5CH ₄ /49.5CO ₂ /1Ar	25	650		
Ni-In/SiO ₂	40000	69CH ₄ /30CO ₂ /1Ar	19.5	600	3	
2.5Co-2.5Ni@SGA	36000	1CH ₄ /1CO ₂ /1Ar	30	600	4	
(NiMg) ₄ Al	3840000	1CH ₄ /1CO ₂ /2N ₂	69.8	900	5	
Ni5/MgAl ₂ O ₄ (SA)	60000	1CH ₄ /1CO ₂ /3N ₂	93.0	750	6	
	60000	1CH ₄ /1CO ₂ /3N ₂	74.2	650		
12%Ni/Mg ₃ Al	60000	1CH ₄ /1CO ₂ /2N ₂	88	750	7	
Ni-Ce/ZrO ₂	Ni-Ce/ZrO ₂ 24000		55	700	Q	
Ni-Y/ZrO ₂	24000	1CH ₄ /1CO ₂	70	700	700	
Ni-P/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1Ar	84	750	9	
Ni-2P/Al ₂ O ₃	18000	1CH ₄ /1CO ₂ /1Ar	65	750		
Hollow-NiPt/SiO ₂	60000	1CH ₄ /1CO ₂ /1N ₂	94.9	800	10	
Mo/Ni/Al ₂ O ₃ -CeO ₂	12000	1CH ₄ /1CO ₂	72	700	11	
0.01 %Rh/Al ₂ O ₃	12000	47CH ₄ /47CO ₂ /6N ₂	83	750	12	
Ni/ZrO ₂ -Al ₂ O ₃	25000	1CH ₄ /1CO ₂	58	700	13	
Co-Al/ZrO ₂	60000	2CH ₄ /2CO ₂ /1N ₂	67.6	850	14	
Ni-Co/SiO ₂	50000	1CH ₄ /1CO ₂ /8He	80	700	15	
Ga/MCM-41	39000	30CH ₄ /30CO ₂ /5N ₂	85	800	16	
NiMg ₁ Al ₁	80000	1CH ₄ /1CO ₂	83	800	17	
NaOH Ni/MgO-Al ₂ O ₃	48000	1CH ₄ /1CO ₂ /2N ₂	91	800	18	

Table S3 Activity comparison of the Ni-based catalysts for DRM.

reaction.		
Sample	I_D/I_G	
Ni/Al ₂ O ₃	1.19	
In/Al ₂ O ₃	1.35	
3Ni-2In/Al ₂ O ₃	0.44	

Table S4 I_D/I_G ratios obtained from carbon-related peaks for each of the samples subjected to DRM

Fig. S1 The pore size distribution curves of the support and catalysts.

Fig. S2 TEM images of reduced Ni/Al $_2O_3$ (A), In/Al $_2O_3$ (B), and 3Ni-2In/Al $_2O_3$ (C) (Ni and In

particles are marked with white and yellow lines, respectively).

Fig. S3 HAADF-STEM image (A) and EDS profile of Al (B), Ni (C), In (D), and merged images (E) and (F) in reduced Ni-In/Al₂O₃ catalyst.

The composition of the reduced bimetallic particles in the catalyst was determined using scanning TEM (STEM) coupled with energy-dispersive X-ray spectroscopy (EDS), as shown in Fig. S3. The high-angle annular dark-field (HAADF) STEM image in Fig. S3A and EDS elemental mappings of Ni in Fig. S3C shows a clear agglomeration of Ni nanoparticles on the support surface due to the high temperature reduction process. According to EDS elemental mappings in Fig. S3B, the spatial distribution of Al is uniform. The agglomeration of Ni also affects the distribution of In particles, In particles also display a trend of partial concentration of distribution due to the interaction between Ni and In (Fig. S3D), and the merged image (Fig. S3E) further confirms the distribution of In was influenced by Ni.

Fig. S4 Particle size distributions of Ni and In in the (A) Ni/Al₂O₃, (B) In/Al₂O₃, (C) and

(D) 3Ni-2In/Al₂O₃ catalyst.

Fig. S5 (A) CO₂-TPD and (B) NH₃-TPD curves of fresh calcined catalysts with different Ni-In ratios.

Fig. S6 XRD patterns of the spent catalysts.

The XRD patterns of the spent catalysts are shown in Fig. S6, and compared with the fresh catalysts, it is clearly observed that a strong carbon species peak at 26.6° (JCPDS no. 89-8487) of the Ni/Al₂O₃, In/Al₂O₃, 4Ni-1In/Al₂O₃, and 1Ni-4In/Al₂O₃, indicating a large amount of carbon generated during the reaction. However, there is no obvious carbon peak for the 2Ni-3In/Al₂O₃ catalysts and 3Ni-2In/Al₂O₃ catalysts, indicating little or no carbon deposition in these two catalysts during the reaction.

Fig. S7 Raman spectra of the spent catalysts.

In the spectrum, two prominent peaks appear in the wavenumber ranges of 1336-1340 cm⁻¹ (D band) and 1575-1590 cm⁻¹ (G band). The D band is attributed to structural defects of carbon, representing amorphous carbon or whisker carbon with flaws, while the G-band is attributed to the stretching vibration of the sp² bond in ordered graphitic carbon ¹⁹. The intensity of the D-band peaks of the 3Ni-2In/Al₂O₃ catalysts was significantly lower, indicating that the amount of amorphous or whisker carbon produced on the spent 3Ni-2In/Al₂O₃ catalysts was less compared to the other two catalysts The relative intensity between the D and G bands (I_D/I_G) reflects the degree of crystallinity of the carbon deposition. The change in the I_D/I_G ratio of different catalysts is illustrated in Table S4, In/Al₂O₃ catalysts (1.35)> Ni/Al₂O₃ catalysts (1.19)> 3Ni-2In/Al₂O₃ catalyst (0.44). The I_D/I_G ratio for the spent Ni/Al₂O₃ and In/Al₂O₃ catalysts is more than 1, which indicates that the crystallinity of carbon deposition generated on these two monometallic catalysts is low, and the carbon generated is mainly amorphous carbon or filamentary carbon, and it can be known from the results of TG and TEM that the carbon deposition generated on the In/Al₂O₃ catalysts is amorphous carbon and that the carbon generated on the Ni/Al₂O₃ catalysts is mainly filamentary carbon. For the 3Ni-2In/Al₂O₃ catalyst, the heights of the D-band peak and G-band peak were significantly lower than the Ni/Al₂O₃ and In/Al₂O₃, indicating that less carbon was generated on the catalyst during the reaction process. The I_D/I_G ratio was 0.44, indicating that the carbon generated during the reaction process exhibited higher crystallinity and graphite carbon is formed, and the graphitic carbon generated can be oxidized by CO_2 to form CO without affecting the DRM reaction.

Fig. S8 TEM images of spent Ni/Al $_2O_3$ (A), In/Al $_2O_3$ (B), and 3Ni-2In/Al $_2O_3$ (C).

Fig. S9 Particle size distributions of Ni and In in the (A) spent Ni/Al₂O₃, (B) spent

In/Al₂O₃, (C) and (D) spent 3Ni-2In/Al₂O₃ catalyst.

Fig. S10. HAADF-STEM images (A) and EDS profile of Al (B), Ni (C), In (D), and

merged images (E) and (F) in spent Ni-In/Al $_2O_3$ catalyst.

A typical HAADF-STEM image and the corresponding elemental mapping reveal the elemental distributions of Ni, In, and Al in the spent Ni–In/Al₂O₃ samples, as shown in Fig. S10. The Ni particles in the spent catalysts were found to be more uniformly distributed than those in the reduced catalysts. This is due to the interaction between the two metals during the reaction, the instability of the In oxides increases the concentration of reactive oxygen near Ni, suppressing the agglomeration effect of Ni particles and making the reaction more active, and the Ni particles are more dispersed in the spent catalyst than in the reduced catalyst, the uniformly dispersed Ni reduces the emergence of carbon species during the reaction process, enhancing DRM stability.

References

- W. Liu, L. Li, S. Lin, Y. Luo, Z. Bao, Y. Mao, K. Li, D. Wu and H. Peng, *J. Energy Chem.*, 2022, 65, 34-47.
- 2. A. Horváth, M. Németh, A. Beck, B. Maróti, G. Sáfrán, G. Pantaleo, L. F. Liotta, A. M. Venezia and V. La Parola, *App. Catal. A Gen.*, 2021, **621**, 118174.
- 3. J. Károlyi, M. Németh, C. Evangelisti, G. Sáfrán, Z. Schay, A. Horváth and F. Somodi, *J. Ind. Eng. Chem.*, 2018, **58**, 189-201.
- 4. H. Arbag, S. Yasyerli, N. Yasyerli, G. Dogu and T. Dogu, *Appl. Catal. B Environ.*, 2016, **198**, 254-265.
- 5. J. Huang, Y. Yan, S. Saqline, W. Liu and B. Liu, Appl. Catal. B Environ., 2020, 275, 119109.
- E. Akiki, D. Akiki, C. Italiano, A. Vita, R. Abbas-Ghaleb, D. Chlala, G. Drago Ferrante, M. Laganà, L. Pino and S. Specchia, *Int. J. Hydrogen Energ.*, 2020, 45, 21392-21408.
- 7. D. Li, S. Xu, K. Song, C. Chen, Y. Zhan and L. Jiang, Appl. Catal., A, 2018, 552, 21-29.
- M. Zhang, J. Zhang, Z. Zhou, S. Chen, T. Zhang, F. Song, Q. Zhang, N. Tsubaki, Y. Tan and Y. Han, *Appl. Catal. B Environ.*, 2020, 264, 118522.
- 9. X. Wang, Y. Liu and K. Liu, Int. J. Hydrogen Energ., 2020, 45, 28325-28336.
- 10. G. Wang, Y. Liang, J. Song, H. Li and Y. Zhao, Front Chem, 2020, 8, 220.
- 11. A. Jawad, F. Rezaei and A. A. Rownaghi, Catal. Today, 2020, 350, 80-90.
- 12. S. Chu, Z. Cai, M. Wang, Y. Zheng, Y. Wang, Z. Zhou and W. Weng, *Nanoscale*, 2020, **12**, 20922-20932.
- 13. S. A. Shin, Y. S. Noh, G. H. Hong, J. I. Park, H. T. Song, K.-Y. Lee and D. J. Moon, *J. Taiwan. Inst. Chem. E.*, 2018, **90**, 25-32.
- 14. J.-H. Park, S. Yeo, I. HeO and T.-S. Chang, App. Catal. A Gen., 2018, 562, 120-131.
- 15. S. Das, M. Sengupta, A. Bag, M. Shah and A. Bordoloi, Nanoscale, 2018, 10, 6409-6425.
- A. Al-Fatesh, A. Ibrahim, J. Abu-Dahrieh, A. Al-Awadi, A. El-Toni, A. Fakeeha and A. Abasaeed, *Catalysts*, 2018, 8, 229.
- 17. Y. Zhu, S. Zhang, B. Chen, Z. Zhang and C. Shi, Catal. Today, 2016, 264, 163-170.
- 18. L. Jin, B. Ma, S. Zhao, X. He, Y. Li, H. Hu and Z. Lei, *Int. J. Hydrogen Energy*, 2018, **43**, 2689-2698.
- J. G. Roblero, F. Pola-Albores, M. A. Valenzuela, E. Rojas-García, E. Ríos-Valdovinos and G. Valverde-Aguilar, *Int. J. Hydrogen Energ.*, 2019, 44, 10473-10483.