Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

CoZn/N-doped porous carbon derived from bimetallic zeolite imidazolate

framework/g-C₃N₄ for efficient hydrodeoxygenation of vanillin

Zegang Qiu, *a Xiaoxia He, a Zhiqin Li, a Qichen Guan, b Liang Ding, a Yanan Zhua and Yueling Cao *b,c

^a Xi'an Shiyou University, Xi'an 710065, PR China.

^b Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, PR China.

^c Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, PR China

*Corresponding Authors: qiuzegang@xsyu.edu.cn; yuelingcao@nwpu.edu.cn

Table S1 Hydrodeoxygenation (HDO) of vanillin to 2-methoxy-4-methylphenol (MMP) over various catalysts in

	Reaction conditions				Vanillin	MMP		
Catalysts		p/MPa	t/h	Solvent	conversion/	Selectivity	Reference	Date
	T/°C				%	/%		
Pd@BC-KFe-800	65	1	2	n-butanol	92.4	57.5	[6]	2021
Pd@NH ₂ -UiO-66	100	0.5	1	water	100	100	[7]	2016
^a Pd-POP	140	1	18	isopropyl alcohol	96.5	98.2	[8]	2017
Pd/HHT	50	0.5	4	isopropyl alcohol	100	> 99.5	[9]	2021
$Pd_1/WO_{2.72}$	40	0.1	0.25	ethanol	99	99	[10]	2021
Ru-PEEK-WC	75	1.8		water	32.8	0	[11]	2021
Pd Rh/Al ₂ O ₃	45	5.6	0.5	isopropyl alcohol	100	100	[12]	2021
$Pd/C_{vin}ZnCl_2 CO_2$	100	3	3	water	100	92	[13]	2020
Pd/Ru @GO	room	1	24	methanol	100	92.3	[14]	2020
^b Cu ₃ Pd@BBA-1	140	1	8	isopropyl alcohol	99.3	93.6	[15]	2018
Co/N-C-600	150	1	8	isopropyl alcohol	100	99	[17]	2017
Co/Ce@NC	170	1	6	ethanol	> 99	> 99	[18]	2021
Cu/HNZY	160	1	2	methanol/water	100	99	[19]	2018
Cu/AC-600	180	2	5	isopropyl alcohol	99.9	99.1	[20]	2018
Cu/Zn15Al4Sn1-LDH	180	2	4	isopropyl alcohol	100	98.5	[21]	2019
°4Co-1Zn/NPC	100	1	2	water	100	> 99	This work	

literatures and this work

^aBBA-1: N-rich Porous Organic Polymer

^bPOP: Porous Organic Polymer

°HDO of vanillin to MMP over 4Co-1Zn/NPC catalyst in this work is presented for comparison

Fig. S1 XRD patterns of serial Co-Zn-ZIF/g-C₃N₄ with different ratios of Co/Zn

Fig. S2 SEM images of Co-ZIF/g-C $_3N_4$ (a and b) and 4Co-1Zn-ZIF/g-C $_3N_4$ (c and d)

Fig. S3 TEM images of 4Co-1Zn-ZIF/g-C $_3N_4$

Fig. S4 SEM images of 9Co-1Zn/NPC (a and b) and 2Co-3Zn/NPC (c and d)

Fig. S5 TEM images of serial Co-Zn/ NPC catalysts with different ratios of Co/Zn
(a) Co/ NPC; (b) 9Co-1Zn/ NPC; (c) 4Co-1Zn/ NPC; (d) 2Co-3Zn/ NPC

Catalysts	Co wt./%	Zn wt./%
Co/NPC	0.48	
9Co-1Zn/NPC	0.44	0.08
4Co-1Zn/NPC	0.40	0.29
2Co-3Zn/NPC	0.22	2.50

Table S2 The content of Co and Zn measured via ICP-AES

_

Fig. S6 XPS survey spectrum of 4Co-1Zn/NPC

Fig. S7 XPS spectra of serial Co-Zn/ NPC catalysts with different ratios of Co/Zn (a) N 1s; (b) C 1s

	5 The conten	t of sufface e			5
Catalysts	Co/%	Zn/%	C/%	N/%	O/%
Co/NPC	0.50		93.31	3.35	2.84
9Co-1Zn/NPC	0.44	0.13	91.77	2.52	5.14
4Co-1Zn/NPC	0.61	0.42	91.80	3.72	3.45
3Co-2Zn/ NPC	0.87	0.74	87.01	6.14	5.24
2Co-3Zn/NPC	0.64	0.40	89.19	4.57	5.20
1Co-4Zn/ NPC	0.76	0.56	88.19	5.98	4.51

Table S3 The content of surface elements obtained from XPS

Table S4 Hydrodeoxygenation of Vanillin to 2-methoxy-4-methylphenol (MMP) over different catalysts

Catalanta	Vanillin	MMP	НМР	
Catalysis	Conversion /%	Selectivity /%	Selectivity /%	
Co/CN	100	36.1	63.9	
Co/NPC	100	48.5	51.5	
4Co-1Zn/CN	100	88.5	11.5	
4Co-1Zn/NPC	100	99.0	1.0	

Reaction conditions: catalyst 20 mg, vanillin 0.5 mmol, H₂O 5 mL, 110 °C, 1 MPa H₂, 2 h

Co/CN and 4Co-1Zn/CN: N-doped carbon catalysts without the adding of g-C₃N₄

Fig. S8 Influence of pyrolyzing temperatures on hydrodeoxygenation reaction of vanillin over Co/NPC Co-700, Co-800, Co-900, Co-1000: Co/NPC catalysts pyrolyzed at 700°C, 800°C, 900°C, 1000°C MMP: 2-methoxy-4-methylphenol; HMP: 4-Hydroxy-3-methoxybenzyl alcohol Reaction conditions: catalyst 20 mg, Vanillin 0.5 mmol, H₂O 5 mL, 110 °C, 1 MPa

Fig. S9 Influence of pyrolyzing temperatures on hydrodeoxygenation reaction of vanillin over 4Co-1Zn/NPC CoZn-700, CoZn-800, CoZn-900, CoZn-1000: 4Co-1Zn/NPC pyrolyzed at 700°C, 800°C, 900°C, 1000°C MMP: 2-methoxy-4-methylphenol; HMP: 4-Hydroxy-3-methoxybenzyl alcohol Reaction conditions: catalyst 20 mg, Vanillin 0.5 mmol, H₂O 5 mL, 110 °C, 1 MPa