Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Direct conversion of glycerol to *n*-propanol over tandem catalytic

dehydration-hydrogenation system

Thanasak Solos,^{*a,b*} Napanot Methiritthikul,^{*a*} Chanakran Homla-or,^{*a*} Preedawan Duangchan,^{*a*} Kittisak Choojun,*^{*a,b*} and Tawan Sooknoi**^{*a,b*}

- ^aDepartment of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
- ^bCatalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand

E-mail: thanasak.ccr@gmail.com, baszkroegchai@gmail.com, starlikebyun@gmail.com,

mymineee@hotmail.com, kittisak.ch@kmitl.ac.th, kstawan@gmail.com

* Corresponding author for ^aDepartment of Chemistry

** Corresponding author for bCatalytic Chemistry Research Unit

Table S1 Conversion and products yields over the tandem catalytic system

	Catalysts		ure	uo	on ^a				Yield (%mol))			vity ^b
Entry	Top bed¦ Bottom bed	<i>W/F</i> (g·h·mol ⁻¹)	Reaction Temperat (°C)	Glycerol Conversi (%mol)	Acrolein Conversio (%mol)	Acrolein	Hydroxyacetone	Propionaldehyde	<i>n</i> -Propanol	Propanoic acid	Acetaldehyde	Ethanol	Acetic Acid	<i>n</i> -Propanol Hydrogenation Selecti
1	HZSM-5 20Ni/SiO2	177 ¦ 59	300 150	100	98.1	1.5	10.2	36.7	38.1	6.0	-	2.4	5.1	46
2	HZSM-5 20Ni/SiO2	177 ¦ 59	300 200	100	100	-	2.6	11.4	48.1	4.5	-	1.6	4.3	58
3	HZSM-5 ⁺ ₁ 20Ni/SiO ₂	177 ¦ 59	300 300	100	100	-	-	7.4	13.8	3.4	-	1.3	3.2	17

(Reaction conditions: 10wt.% glycerol solution, 100 mL/min of H_2 , 1 atm. The activity is at 1 h on stream.) ^a Estimated from acrolein produced by the first catalytic bed.

^b n-Propanol selectivity based on hydrogenation of acrolein/propionaldehyde produced from the first bed.

Fig. S1 XRD patterns of supported Ni catalysts after reaction.

Table S2 Ni content of fresh and spent catalysts

Catalysta	Ni Content ^a (wt.%)				
Catarysis	Fresh	Spent			
20Ni/SiO ₂	21.1	21.0			
20Ni/Al ₂ O ₃	22.0	21.9			

^a Determined by XRF analysis.

Fig. S2 TGA and DTG thermogram of spent 20Ni/Al₂O₃ catalyst.

Fig. S3 The reaction of glycerol over HZSM-5^{|20}Ni/Al₂O₃. (Reaction conditions: 10wt.% glycerol, *W/F* 177^{|30} g·h·mol⁻¹, 100 mL/min of H₂, 1 atm, 300^{|175} °C) Note: 100% glycerol conversion over the first catalytic bed.