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Monomer synthesis

Terephthalamidine dihydrochloride [1]: Benzene-1,4-dicarbonitrile (1.28 g, 10.0 mmol) was 
dissolved in 20 mL THF, and then under stirring 40 mL of 1 M LiN(SiMe3)2 solution was 
added dropwise while cooled with an ice bath (0 ˚C). The obtained mixture was kept at room 
temperature (25 ˚C) for 3 h, and then cooled back to 0 ˚C. 40 mL of 6 M HCl–EtOH was added 
to quench the reaction, and the mixture was left overnight before filtration. The precipitate was 
washed with Et2O, and the final product (2.26 g, 96%) was recrystallized from H2O–EtOH 
mixture. 1H NMR (400 MHz, DMSO-d6): δ = 9.63 (s, 4H, NH), 9.37 (s, 4H, NH), 8.03 (s, 4H, 
aromatic H). 



Figure S1. (a) Low-resolution XPS survey. High-resolution XPS spectra of (b) N 1s; (c) C 1s; 
(d) O 1s of Bpy-CTF (top) and B-CTF (bottom).

Figure S2. PXRD patterns of Bpy-CTF and B-CTF.



Figure S3. TGA of Bpy-CTF and B-CTF in a nitrogen atmosphere.

Figure S4. Water contact angles of (a) B-CTF and (b) Bpy-CTF.

Figure S5. Particle size distribution of (a) Bpy-CTF and (b) B-CTF obtained from static light 
scattering measurements in water.



Figure S6. Scheme showing calculated IP, EA of Bpy-CTF and B-CTF [2].

Figure S7. High resolution XPS spectra of (a) N 1s and (b) Co 2p of Bpy-CTF-Co-3; (c) Co 
2p of Bpy-CTF; (d) N 1s and (e) Co 2p of B-CTF-Co-3; (f) Co 2p of B-CTF.



Figure S8. SEM images of (a), (b) Bpy-CTF-Co-1; (c), (d) B-CTF-Co-1.

Figure S9. TEM images of (a), (b) Bpy-CTF-Co-1; (c), (d) B-CTF-Co-1.



Figure S10. TEM image and element mapping of C, N, and Co of Bpy-CTF-Co-1.

Figure S11. FT-IR spectra of Bpy-CTF-Co-3 before and after oxygen evolution. 



Figure S12. UV/Vis of 2 mg of Bpy-CTF and Bpy-CTF-Co-1 in 20 ml of pure H2O or 20 ml 
of 0.01 M AgNO3 in 10 mm pathlength cuvette.



Figure S13. TA spectra (365 nm pump), normalised at the global maximum ΔA, at key pump-
probe wavelengths as indicated (in ps) for (a) and (b) Bpy-CTF and (d) and (e) Bpy-CTF-Co-
1 in pure H2O. DADS for (c) Bpy-CTF and (f) Bpy-CTF-Co-1 from a 6-compartment parallel 
fit; DADS of compartment-0 is scaled by x0.1 for Bpy-CTF and Bpy-CTF-Co-1 and 
compartment-1 is scaled by x0.2 for Bpy-CTF; decay times for each compartment are 
indicated. The grey area at ~500 nm and ~900 nm indicates where spectra obtained in different 
spectral ranges (400 – 500 nm, 500 – 900 nm and 900-1000 nm) have been spliced and between 
710 – 755 nm where spectra obtained in a single spectral range (500 – 900 nm) are 
contaminated by detected pump laser scatter (2λ).



Figure S14. TA spectra (365 nm pump), normalised at the global maximum ΔA, at key pump-
probe wavelengths as indicated (in ps) for (a) and (b) Bpy-CTF and (d) and (e) Bpy-CTF-Co-
1 in pure H2O. DADS for (c) Bpy-CTF and (f) Bpy-CTF-Co-1 from a 5-compartment parallel 
fit; DADS of compartment-0 is scaled by x0.2 and compartment-4 is scaled by x2 for Bpy-CTF 
and Bpy-CTF-Co-1; decay times for each compartment are indicated. The grey area at ~500 
nm and ~900 nm indicates where spectra obtained in different spectral ranges (400 – 500 nm, 
500 – 900 nm and 900-1000 nm) have been spliced and between 710 – 755 nm where spectra 
obtained in a single spectral range (500 – 900 nm) are contaminated by detected pump laser 
scatter (2λ). Note the poor agreement between compartment 4 and the 3 ns TA spectrum 
in the 600 – 700 nm region of Bpy-CTF and in the 400 – 550 and 675 – 800 nm regions for 
Bpy-CTF-Co-1.



Figure S15. TA spectra (365 nm pump) ), normalised at the global maximum ΔA, at key 
pump-probe wavelengths as indicated (in ps) for (a) Bpy-CTF and (c) Bpy-CTF-Co-1 in 0.01 
M AgNO3. DADS for (b) Bpy-CTF and (d) Bpy-CTF-Co-1 from a 6-compartment parallel fit; 
DADS of compartment-0 is scaled by x0.1 and x0.2 for Bpy-CTF and Bpy-CTF-Co-1 
respectively; decay times for each compartment are indicated. (e) Comparison of the DADS 
of compartment 5 for Bpy-CTF (blue) and Bpy-CTF-Co-1(red). The grey area at ~500 nm 
indicates where spectra obtained in different spectral ranges (400 – 500 nm and 500 – 900 nm) 
have been spliced, and between 710 – 755 nm where spectra obtained in a single spectral 
range (500 – 900 nm) are contaminated by detected pump laser scatter (2λ).



Figure S16. TA spectra (365 nm pump), normalised at the global maximum ΔA, at key pump-
probe wavelengths as indicated (in ps) for (a) and (b) B-CTF and (d) and (e) B-CTF-Co-1 in 
pure H2O. DADS for (c) B-CTF and (f) B-CTF-Co-1 from a 5-compartment parallel fit; DADS 
of compartment-0 is scaled by x0.025 and x0.05 for B-CTF and B-CTF-Co-1 respectively, and 
DADS of compartment 4 scaled by x2 for B-CTF; decay times for each compartment are 
indicated. The grey area at ~500 nm indicates where spectra obtained in different spectral 
ranges (400 – 500 nm, 500 – 900 nm and 900-1000 nm) have been spliced and between 710 – 
755 nm where spectra obtained in a single spectral range (500 – 900 nm) are contaminated by 
detected pump laser scatter (2λ).



Figure S17. TA spectra (365 nm pump), normalised at the global maximum ΔA, at key pump-
probe wavelengths as indicated (in ps) for (a) and (b) B-CTF and (d) and (e) B-CTF-Co-1 in 
pure H2O. DADS for (c) B-CTF and (f) B-CTF-Co-1 from a 6-compartment parallel fit; DADS 
of compartment-0 is scaled by x0.025 and x0.05 for B-CTF and B-CTF-Co-1 respectively, and 
DADS of compartment-1 scaled by x0.05 for B-CTF; decay times for each compartment are 
indicated. The grey area at ~500 nm indicates where spectra obtained in different spectral 
ranges (400 – 500 nm, 500 – 900 nm and 900-1000 nm) have been spliced and between 710 – 
755 nm where spectra obtained in a single spectral range (500 – 900 nm) are contaminated by 
detected pump laser scatter (2λ).



Figure S18. The emission spectrum and the intensity of the 300 W Xenon lamp.



Table S1. Elemental analysis results of Bpy-CTF and B-CTF.

N (%) C (%) H (%)
Exp. Cal. Exp. Cal. Exp. Cal.

Bpy-CTF 21.41 27.76 65.19 66.65 3.25 5.59
B-CTF 15.55 20.40 69.66 74.98 3.81 46.1

Table S2. Optical gap, band positions and oxygen evolution rates (OERs) of Bpy-CTF and 
B-CTF.

Optical gap 
(eV)

Water contact 
angle (˚)

Transmittance 
(%)

OERa (µmol g-1 
h-1) 

Bpy-CTF 2.21 -b 1.95 322
B-CTF 2.07 68.2 1.38 162

aReaction conditions: 10 mg CTF photocatalysts loaded with 3 wt.% cobalt was suspended in 
water/AgNO3/La2O3, 300 W Xe light source visible light (≥ 420 nm) irradiation; bNot 
determined as sample swells in contact with water

Table S3. ICP analysis result of Bpy-CTF-Co-x and B-CTF-Co-x.

Initial Co loading (wt. %) Co amount (ICP result) (wt. %)
Bpy-CTF-Co-0.5 0.5 0.48
Bpy-CTF-Co-1 1 0.72
Bpy-CTF-Co-3 3 2.50
Bpy-CTF-Co-5 5 3.66
B-CTF-Co-1 1 0.29
B-CTF-Co-3 3 0.90

Table S4. Estimated fluorescence life-times calculated from time correlated single photon 
counting measurements results.

τ1
a B1

a τ2
a B2

a τ3
a B3

a τAVG
b

CTFs (ns) (%) (ns) (%) (ns) (%) χ² (ns)
Bpy-CTF 0.563 47.258 2.389 45.892 9.12 6.849 1.219 1.99

Bpy-CTF-Co-3 0.487 65.46 2.222 31.955 10.766 2.585 1.695 1.31
aFluorescence life-times for all polymers in ethanol suspension obtained from fitting time-
correlated single photon counting decays to a sum of three exponentials, which yield τ1, τ2, and 

τ3 according to . bτAVG is the weighted average lifetime calculated as 
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Table S5. Overview of reported polymer photocatalysts for OER.

Band 
gap 
(eV)

Co-
catalyst

Sacrificial 
agent

OER
(µmol g-1 h-1)

AQY 
(%)

Light 
source Ref.

Bpy-CTF 2.21 3 wt.% 
Co

0.01 M 
AgNO3, 
0.2 g 
La2O3

322 (≥ 420 nm) 0.56 
(420 nm)

300 W 
Xe

This 
work

CTP-2 2.66 3 wt.% 
Co

0.01 M 
AgNO3, 
0.2 g 
La2O3

100 (> 300 nm) 
50 (≥ 420 nm) - 300 W 

Xe [3]

g-C3N4 2.76 3 wt.% 
Co(OH)2

0.01 M 
AgNO3, 
0.2 g 
La2O3

548 (> 300 nm) 
142 (> 420 nm) - 300 W 

Xe [4]

CTF-1-
100W 2.50 3 wt.% 

RuOx 

0.2 M 
AgNO3 
(0.05 M 
AgNO3)

140 (> 420 nm) 3.8 
(420 nm)

300 W 
Xe [5]

CTF-T1 2.94 RuO2

0.01 M 
AgNO3, 
0.2 g 
La2O3

9 (> 420 nm) - 300 W 
Xe [6]

P10 2.62 1 wt.% 
Co

0.01 M 
AgNO3, 
0.2 g 
La2O3

104 (> 420 nm), 
332 (full arc) - 300 W 

Xe [7]

BpCo-
COF-1 2.41 1 wt.% 

Co
0.005 M 
AgNO3

152 (> 420 nm) 0.46 
(420 nm)

300 W 
Xe [8]

g-C40N3-
COF 2.36 3 wt.% 

Co

0.01 M 
AgNO3, 
0.2 g 
La2O3

50 (> 420 nm) 300 W 
Xe [9]

aza-CMP 
nanosheet 1.22 3 wt.% 

Co(OH)2

0.01 M 
AgNO3, 
La2O3

572 (> 420 nm) - 300 W 
Xe [10]

Urea-PDI 1.79 None

0.05 M 
AgNO3, 
0.1 g 
La2O3

3223.9 
(> 420 nm)

3.86 
(450 nm)

300 W 
Xe [11]

PTPP 1.52 None
0.01 M 
AgNO3, 
La2O3

236 (> 420 nm) 2.11 
(420 nm)

300 W 
Xe [12]

PQL 1.72 None
0.01 M 
AgNO3, 
La2O3

60 (> 420 nm) 0.43 
(420 nm)

300 W 
Xe [12]
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