Synergic Photocatalytic $\rm CH_4$ Conversion to C1 liquid products using Fe species-modified $g\text{-}C_3N_4$

Yue Dai,^a Tangtong Ju,^a Hailong Tang,^a Meiling Wang,^a, * Yongqing Ma,^a Min

Wang,^{b,*} Ganhong Zheng^a and Xiao Sun^c

^aSchool of Materials Science and Engineering, Anhui University, Hefei, 230039,

China.

^bSchool of Physics and optoelectronics engineering, Anhui University, Hefei, 230601,

China

^cHefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory

of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education

Institutes, School of Chemistry and Materials Science, University of Science and

Technology of China, Hefei 230026, China.

*To whom correspondence should be addressed.

Tel: (86) 13856996630, E-mail: mlw@ahu.edu.cn, ahuwm@ahu.edu.cn

Table S1-S3 and Figure S1-S3

Sample	Fe amount	Specific surface	Pore Diameter	
name	[wt%]	area		
		[m ² g ⁻¹]	[nm]	
g-C ₃ N ₄	0	114.411	13.99	
0.5Fe	0.5	118.789	16.10	
1Fe	1	107.79	7.27	
2Fe	2	96.585	7.98	
3Fe	3	130.031	7.36	

Table S1. The N_2 adsorption-desorption isotherms for $g-C_3N_4$ and $Fe_x-g-C_3N_4$ with different Fe contents.

Figure S1 FTIR spectra of sample g-C₃N₄ and Fe-g-C₃N₄.

Figure S2 High resolution O1s XPS spectra of g-C₃N₄ and Fe₁-g-C₃N₄.

Figure S3 UV-vis spectra of Fe₁-g-C₃N₄, inset: bandgap determination using $[Ah\gamma]^{1/2}$ vs h γ plots.

radical	CH ₃ OH	НСНО	НСООН	CH ₃ OOH	SUM of
scavengers					C1
					products
Without	0.8912	7.4828	2.8369	3.2077	14.4186
radical					
scavengers					
isopropanol	0.4014	2.4886	0	0	2.89
benzoquinone	0.4077	0	0	0	0.4077

Table S2 Yields of C1 products without and with radical scavengers.