Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

1

Supplementary Material

2 Ru supported on activated carbon and coated with polydopamine

3 layer for effective acetylene hydrochlorination

- 4 Miaomiao Zhang^a, Haiyang Zhang^a, *, Feng Li^a, Lisha Yao^a, Wencai Peng^a, *, Jinli
- 5 Zhang^{a, b}
- 6 ^a School of Chemistry and Chemical Engineering/Key Laboratory for Green
- 7 Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University,
- 8 Shihezi 832000 (P.R. China); E-mail: zhy198722@163.com (H.Y. Zhang),
- 9 pengwencai@shzu.edu.cn. (W.C. Peng).
- ¹⁰ ^b School of Chemical Engineering and Technology, Tianjin University, Tianjin
- 11 300072 (P.R. China); E-mail: zhangjinli@tju.edu.cn (J.L. Zhang)
- 12 *Corresponding authors: Tel: +86-993-2057-277;
- 13 E-mail: zhy198722@163.com (Haiyang Zhang); pengwencai@shzu.edu.cn (Wencai
- 14 Peng)
- 15

1 Table and Figure captions

- 2 Table S1 The relative content and binding energy of Ru species in the unreacted and reacted Ru-
- 3 based catalysts.
- 4 Table S2 EXAFS fitting parameters at the edge for various samples.
- 5
- 6 Fig. S1 The (a) C₂H₂ conversion and (b) selectivity to VCM of different catalysts. Reaction
- 7 condition: T=180 °C, GHSV(C_2H_2) =180 h⁻¹, and $V(HCl)/V(C_2H_2)$ =1.15.
- 8 Fig. S2 (a) Raman spectra and (b) FT-IR spectra of PDA-T materials.
- 9 Fig. S3 FT-IR spectra of unreacted catalysts.
- 10 Fig. S4 HAADF-STEM images of the all catalysts.
- 11 Fig. S5 SEM images of the unreacted PDA catalysts.
- 12 Fig. S6 HADDF-TEM images of the (a) unreacted Ru/AC@PDA-100, (b) reacted Ru/AC@PDA-
- 13 100, (c) unreacted Ru/AC@PDA-500, (d) reacted Ru/AC@PDA-500, (e) unreacted
- 14 Ru/AC@PDA-800, and (f) reacted Ru/AC@PDA-800.
- 15 Fig. S7 Nitrogen adsorption-desorption isotherms of the (a) unreacted and (b) reacted catalysts.
- 16 Fig. S8 TG curves of the unreacted and reacted catalysts recorded under air atmosphere.
- 17 Fig. S9 MS spectra (m/z = 16) of the unreacted Ru catalysts.
- 18 Fig. S10 Ru 3p XPS spectra of the reacted Ru catalysts.
- 19 Fig. S11 The real/imaginary component of the FT with the scattering paths used in the fitting
- 20 models.
- 21 Fig. S12 Wavelet transform spectra of the Ru-based catalysts.
- 22 Fig. S13 (a) N Is XPS spectrum of the unreacted AC@PDA catalyst and (b) possible structure of
- 23 PDA.
- 24 Fig. S14 The most stable calculation model of the complex.
- 25 Fig. S15 Energy profiles of Ru/AC catalyst for acetylene hydrochlorination.

Catalyst	Binding energy (eV) , (Area%)							
	$Ru^{n+}(n>4)$	Ru ⁴⁺	Ru ³⁺	$Ru^{z+}(1 \le z \le 3)$	Ru ⁰	$\operatorname{Ru}^{m^+}(m \ge 3)$		
Unreacted Ru/AC	467.6 (14.2)	465.0 (17.2)	463.1 (35.0)	/	461.3 (33.6)	66.4		
Reacted Ru/AC	467.3 (8.9)	464.9 (26.2)	463.1 (29.9)	/	461.5 (35.0)	65.0		
Unreacted Ru/AC@PDA-100	467.3 (15.4)	465.2 (23.0)	463.9 (30.3)	462.0 (31.3)	/	68.7		
Reacted Ru/AC@PDA-100	467.7 (11.1)	465.2 (18.3)	463.2 (35.7)	/	461.2 (34.9)	65.1		
Unreacted Ru/AC@PDA-500	467.5 (19.7)	465.4 (22.8)	463.5 (29.6)	461.6 (27.9)	/	72.1		
Reacted Ru/AC@PDA-500	467.8 (18.1)	465.1 (16.1)	463.1 (33.1)	/	461.4 (32.7)	67.3		
Unreacted Ru/AC@PDA-800	467.6 (26.9)	465.7 (22.0)	463.6 (25.2)	461.6 (25.9)	/	74.1		
Reacted Ru/AC@PDA-800	468.0 (12.2)	465.4 (14.6)	463.4 (33.6)	/	461.4 (39.6)	60.4		

Table S1 The relative content and binding energy of Ru species in the unreacted and reacted Ru-based catalysts.

Sample	shell	CN	R(Å)	σ^2	ΔE_0	R factor
Ru foil	Ru-Ru	12	2.67±0.01	0.0037	2.2±0.7	0.0085
RuO ₂	Ru-O	7.8±1.0	1.98±0.01	0.0029	2.5±1.9	0.0197
RuCl ₃	Ru-Cl	5.3±0.5	2.35±0.02	0.0036	0.2±2.1	0.0227
Ru/AC	Ru-O/N	1.7±0.4	1.81±0.02	0.0021		
	Ru-Cl	4.2±0.3	2.36±0.01	0.0016	-2.0±1.8	0.0139
	Ru-Ru	4.1±0.6	2.60±0.02	0.0071		
Ru/AC@PDA-100	Ru-O/N	5.4±0.1	2.07±0.01	0.0041	42107	0.0030
	Ru-Ru	1.5±0.1	2.71±0.01	0.0048	4.3±0.7	
Ru/AC@PDA-500	Ru-O/N	5.9±0.4	2.07±0.01	0.0064	2 0 1 1 0	0.0137
	Ru-Ru	1.1±0.2	2.70±0.01	0.0037	2.8±1.8	
Ru/AC@PDA-800	Ru-O/N	6.5±0.3	2.04±0.01	0.0040	3.6±1.2	0.0037

2 ^{*a*}N: coordination numbers; ^{*b*}R: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential

3 correction. *R* factor: goodness of fit. S_0^2 was set to 0.71, according to the experimental EXAFS fit

4 of Ru foil reference by fixing CN as the known crystallographic value; δ : percentage.

4 Reaction condition: T=180 °C, GHSV(C_2H_2) =180 h⁻¹, and $V(HCl)/V(C_2H_2)$ =1.15.

1

Ig. (a) Raman spectra and (b) 11^{-1} R spectra of $1DR^{-1}$ materials.

Fig. S3 FT-IR spectra of unreacted catalysts.

The characteristic peaks are centered at 3435 cm⁻¹: the -OH stretching vibration (e.g., those in phenol, carboxyl and chemisorbed water) ¹, 1110 cm⁻¹: C-O stretching vibrations (e.g., ethers and phenols) ^{2, 3}, and 1560 cm⁻¹: aromatic CN heterocycles ^{4, 5}.

Fig. S4 HAADF-STEM images of the all catalysts.

3 Synthesis of activated carbon (AC) supported ruthenium catalysts with varying ruthenium particle size (dp (Ru)) via thermal activation at different temperatures, indicated in the sample 4 5 code. HAADF-STEM images, with the respective metal particle size distribution, obtained from analysis of >150 particles, visualize a steady metal particle growth with an increasing activation 6 temperature on carbon carriers. 7

Fig. S5 SEM images of the unreacted PDA catalysts.

1

4 Fig. S8 TG curves of the unreacted and reacted catalysts recorded under air atmosphere.

Fig. S9 MS spectra (m/z = 16) of the unreacted Ru catalysts.

Fig. S10 Ru 3p XPS spectra of the reacted Ru catalysts.

3 Fig. S11 The real/imaginary component of the FT with the scattering paths used in the fitting

2

models.

Fig. S14 The most stable calculation model of the complex.

1 2

Fig. S15 Energy profiles of Ru/AC catalyst for acetylene hydrochlorination.

1 References

- 2 1 A. M. Puziy, O. I. Poddubnaya, A. Martinez-Alonso, F. Suarez-Garcia and J. M. D.
- 3 Tascon, *Carbon*, 2002, **40**, 1493-1505.
- 4 2 Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia
- 5 and L. Xia, Chem. Eng. Res. Des., 2013, 91, 361-368.
- 6 3 A.-N. A. El-Hendawy, Carbon, 2003, 41, 713-722.
- 7 4 Z. Shen, Y. Liu, Y. Han, Y. Qin, J. Li, P. Xing and B. Jiang, RSC Adv., 2020, 10,

8 14556-14569.

- 9 5 H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu, P. Liu, H. Yang, T. An, Z. Tang and
- 10 H. Zhao, *Small*, 2014, **10**, 3371-3378.
- 11 6 X. Li, P. Li, X. Pan, H. Ma and X. Bao, *Appl. Catal. B-Environ.*, 2017, 210, 11612 120.
- 13 7 H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, Science, 2007, 318,

14 426-430.