Carbon nitride based Schottky junction with Ni-Mo synergistic interaction for high efficient photocatalytic hydrogen production

Lei Ding,^a Li-Jing Wang,^b Ru-Yi Liu,^a Yan-Fei Li,^a Hai-Zhu Sun*^a

^a National & Local United Engineering Laboratory for Power Batteries, College of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.

^b Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, People's Republic of China.

* Corresponding authors. E-mail: sunhz335@nenu.edu.cn

1. Materials

Analytically pure urea, $Na_2MoO_4 \cdot 2H_2O$, $Ni(NO_3)_2 \cdot 6H_2O$ and $NaH_2PO_2 \cdot 2H_2O$ were purchased from Aladdin company, China and used without further purification. Throughout the experiment, distilled water was provided by a Water Purifier Nanopure system.

2. Characterization

The structure of CN, CN/xNiMoP₂ were investigated by power X-ray diffraction (XRD) measurement on a Rigaku SmartLab X-ray diffractometer. The morphology of the catalysts was measured by field emission scanning electron microscopy (XL 30 ESEM-FEG) and transmission electron microscopy (TEM, JEM-2010F). A Nicolet AVATAR 360 FT-IR spectrophotometer was operated to achieve the Fourier transform infrared (FT-IR) spectrum. The UV-Vis diffuse reflectance spectra (DRS) were obtained by a UV-Vis spectrophotometer of Shimadzu 3600 UV-Vis-NIR spectrophotometer (Cary 7000). Nitrogen adsorption-desorption isotherms and BET test were performed by using ASAP 2020M. The fluorescence spectra (PL) and timeresolved photoluminescence (TRPL) decay spectra were obtained by Edinburgh FLS920P. The X-ray photoelectron spectra (XPS) were conducted on a VG ESCALAB MKII spectrometer, employing Mg K excitation (1253.6 eV). Electron paramagnetic resonance (EPR) experiments were conducted at room temperature on an ER-200D spectrometer (Bruker, Germany). Thermogravimetric analysis (TGA) measurements were conducted using NETZSCH STA499F3 (air flow) with mass spectroscopy (MS, QMS403D).

3. Electrochemical test analysis

The photocurrent density and electrochemical impedance spectra (EIS) were acquired on a CHI 660E system (Shanghai Chenhua Instrument Co., Ltd, Shanghai, China) in a three-electrode system. The FTO/catalysts were used as the working electrode, a saturated Ag/AgCl electrode was used as the reference electrode, and a Pt sheet was used as the counter electrode. The working electrodes were prepared as follows: Typically, 35 mg of photocatalyst powder, 100 mg ethyl cellulose and 2 mL ethanol were mixed in an agate mortar and thoroughly ground for 60 min. Then, 0.5 mL of the solution was homogeneously spread on a FTO (1 cm×3 cm) glass substrate. After coating, the FTO glasses were calcined at 350 °C for 2 h under air atmosphere. 0.5 M Na₂SO₄ was used as electrolyte at normal temperature, the light source was a 300 W Xe lamp with a UV cutoff filter (420 nm).

4. Apparent quantum efficiency (AQE) calculations

The measurement of apparent quantum efficiency (AQE) was carried out under the Xe lamp (300 W) equipped with different band-pass filters (420 nm). The intensity of irradiated light was recorded from a spectroradiometer (CEL-FZ-A, China). The apparent quantum efficiency (AQE) was calculated by the Equation 1:

$$AQE(\%) = \frac{2 \times \text{number of evolved H2 molecules}}{\text{number of incident photons}} \times 100\%$$
(1)

$$= \frac{2n\text{NAhc}}{PS\lambda t} \times 100\%$$

where *n* is the evolution amount of H₂, N_A is Avogadro's constant, h is Planck's constant, c is the speed of light, λ is the wavelength of the incident light, *P* is the power density, *S* is the light exposure area, and *t* is the reaction time.

Wavelength	H ₂ Evolved	Light	AQE	
	(µmol)	Intensity		
$\lambda = 380 \text{ nm}$	4.82	6.07 mW	17.7%	
$\lambda = 400 \text{ nm}$	4.29	8.17 mW	11.1%	
$\lambda = 420 \text{ nm}$	2.61	13.51 mW	3.9%	
$\lambda = 450 \text{ nm}$	1.55	9.77 mW	3.0%	
$\lambda = 500 \text{ nm}$	0.20	9.83 mW	0.35%	

Table S1. Calculated apparent quantum efficiency (AQE) at different wavelengths.

Fig. S1 SEM images of CN.

Fig. S2 XRD patterns of CN/xNiMoP₂.

Fig. S3 FTIR spectra of CN/xNiMoP₂.

Fig. S4 XRD pattern of the residue of $CN/3NiMoP_2$ composite after TGA measurement.

According to the Fig. 3c and Fig. S4,

$$m_{(Mo9O26)} + m_{(Ni3(PO4)2)} = 24.6\% * m_{(CN/3NiMoP2)}$$
(2)
$$n^*M_{(Mo9O26)} + 3n^*M_{(Ni3(PO4)2)} = 24.6\% * m_{(CN/3NiMoP2)}$$
(3)

here, m is the mass of sample. M is the relative molecular mass of sample. n is the amount of substance of Mo_9O_{26} . Since the elements Ni and Mo have the same amount of substance, the amount of substance of $Ni_3(PO_4)_2$ is 3n.

For NiMoP₂, the amount of substance is 9n. Therefore, the loading mass percentage of NiMoP₂ in CN/3NiMoP₂ was obtained by the following equation.

$$\omega\% = 9n*M_{(NiMoP2)} / m_{(CN/3NiMoP2)} *100\%$$
(4)

Accordingly, NiMoP₂ in CN/3NiMoP₂ is about 19.5%.

Fig. S5 (a) Nitrogen adsorption-desorption; (b) Pore size distribution profiles of CN and CN/xNiMoP₂.

Fig. S6 XRD of CN/3NiMoP₂ before and after cycling tests for H₂ production.

Fig. S7 XPS of CN/3NiMoP $_2$ before and after cycling tests for H $_2$ production.

Fig. S8 SEM of $CN/3NiMoP_2$ before and after cycling tests for H_2 production.

Fig. S9 PL spectra of CN/xNiMoP₂.

Fig. S10 Time-resolved transient PL decay spectra of CN/xNiMoP₂.

Fig. S11 Transient photocurrent responses (i–t curves) of CN/xNiMoP₂ under visiblelight irradiation (>420 nm).

Fig. S12 EIS spectra in the dark of CN/xNiMoP₂.

Fig. S13 (a) XRD patterns of CN-Ni₂P and CN-MoP. (b) Photocatalytic H₂ production

rates of different samples ($\lambda > 420$ nm). (c) Transient photocurrent responses (i–t curves) under visible-light irradiation (>420 nm). (d) EIS spectra in the dark.

Fig. S14 UV-vis diffuse reflectance spectra of CN/xNiMoP₂.

Fig. S15 XPS valance band spectra of CN and CN/3NiMoP₂.

Photocatalyst	Cocatalyst	Light source	Reactant solution	Activity (µmol h ⁻¹ g ⁻¹)	AQE (%)	Ref.
CN	NiMoP ₂	300 W Xe lamp (λ>420nm)	TEOA	783	3.9 (420 nm)	This work
CN	PA-Ni	visible light $(\lambda > 420 \text{ nm})$	МеОН	713	2.8 (940 nm)	1
mpg-CN	FeMoS _x	300 W Xe lamp (λ>420nm)	TEOA	551.42	4.0 (420 nm)	2
CN	Co ₃ O ₄	visible light	TEOA	50	None	3
CN	Cu(OH) ₂	visible light	TEOA	187	None	4
CN	CoO _x	300 W Xe lamp (λ>420nm)	TEA	725.7	1.9 (420 nm)	5
CN	NCDS/MoS ₂	300 W Xe lamp ($\lambda > 420 \text{ nm}$)	TEOA	212.41	None	6
CN	Ni(OH) ₂	300 W Xe lamp (λ > 400 nm)	TEOA	87.2	8.2 (400 nm)	7
CN	Mo-Mo ₂ C	300 W Xe lamp (λ>420nm)	TEOA	219.7	8.3 (420 nm)	8
CN	Ni ₂ P/NiO	300 W Xe lamp (λ>420nm)	TEOA	504	0.22 (400nm)	9
CN	FeP	300 W Xe lamp (λ>420nm)	TEOA	177.9	1.57 (420 nm)	10

 Table S2. The comparison of photocatalytic performance with cocatalysts in this work

with other CN based ones for photocatalytic H_2 evolution in recent literatures.

References

- Y. Huang, Y. Jian, L. Li, D. Li, Z. Fang, W. Dong, Y. Lu, B. Luo, R. Chen, Y. Yang, M. Chen and W. Shi, *Angew. Chem. Int. Ed.*, 2021, 60, 5245.
- B. Wang, C. Yan, G. Xu, X. Shu, J. Lv and Y. Wu, *Chem. Eng. J.*, 2022, 427, 131507.
- L. Yang, J. Liu, L. Yang, M. Zhang, H. Zhu, F. Wang and J. Yin, *Renew. Energy*, 2020, 145, 691.
- 4. S. Mahzoon, M. Haghighi and S. M. Nowee, *Renew. Energy*, 2020, **150**, 91-100.
- 5. Y. X. Zhu, T. Wan, X. M. Wen, D. W. Chu and Y. J. Jiang, *Appl. Catal. B: Environ.*, 2019, **244**, 814.
- Y. Jiao, Q. Huang, J. Wang, Z. He and Z. Li, *Appl. Catal. B: Environ.*, 2019, 247, 124.
- R. Cao, H. Yang, S. Zhang and X. Xu, *Appl. Catal. B: Environ.*, 2019, 258, 117997.
- J. Dong, Y. Shi, C. P. Huang, Q. Wu, T. Zeng and W. F. Yao, *Appl. Catal. B: Environ.*, 2019, 243, 27.
- J.-W. Shi, Y. Zou, L. Cheng, D. Ma, D. Sun, S. Mao, L. Sun, C. He and Z. Wang, Chem. Eng. J., 2019, 378, 122161.
- D. Zeng, T. Zhou, W.-J. Ong, M. Wu, X. Duan, W. Xu, Y. Chen, Y.-A. Zhu and
 D.-L. Peng, ACS Appl. Mater. Interfaces, 2019, 11, 5651.