Supporting Information

Two highly crystalline coordination polymers with two-dimensional

PbS networks for photocatalytic synthesis of imines

Yang Li,^{a,c} Xiuyan Cheng,^{b,c} Ze Li,^{a,c} Yigang Jin,^{a,c} Yimeng Sun,^a Ye Zou,^a Liyao Liu,^a Ran Duan,^d Jianling Zhang,^{*b,c} Wei Xu^{*a,c}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^dBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

*Corresponding author e-mail: zhangjl@iccas.ac.cn; wxu@iccas.ac.cn

General Information4
Synthesis of Pb-HBT4
Synthesis of Pb-BDT4
Photocatalytic oxidation of benzylamine4
Photoelectrochemical test4
Quenching experiment4
Electron spin resonance (ESR) experiment4
Structure solving and refinement method5
Characterizations5
Fig. S1 Amplified image of PXRD pattern of Pb-HBT in the 2 θ range of 10° to 80°7
Fig. S2 Amplified image of PXRD pattern of Pb-BDT in the 2 θ range of 15° to 80°8
Fig. S3 Crystal structure of Pb-BDT: (a) Coordination environments of Pb. (b, c) Pb-S 2D networks. (d) Extended structure of Pb-BDT9
Fig. S4 SEM-EDS images of Pb-HBT9
Fig. S5 SEM-EDS images of Pb-BDT10
Fig. S6 EPMA data of Pb-HBT10
Fig. S7 EPMA data of Pb-BDT10
Fig. S8 Raman spectrum of Pb-HBT11
Fig. S9 FT-IR spectrum of Pb-HBT11
Fig. S10 Raman spectra of BDT and Pb-BDT12
Fig. S11 FT-IR spectrum of Pb-BDT12
Fig. S12 (a) The full XPS spectrum, (b) S 2p XPS spectrum and (c) Pb 4f XPS spectrum of Pb- HBT. (d) The full XPS spectrum, (e) S 2p XPS spectrum and (f) Pb 4f XPS spectrum of Pb-BDT.
Fig. S13 TGA curves of Pb-HBT and Pb-BDT14
Fig. S14 Calculated band structure of Pb-HBT14
Fig. S15 Calculated band structure of Pb-BDT15
Scheme S1 Proposed reaction mechanism for the photocatalytic oxidation of benzylamine over the Pb-HBT15
Table S1 Crystallographic data of Pb-HBT and Pb-BDT. 16
Table S2 Element analysis data of Pb-HBT and Pb-BDT17

Table of contents

Table S3 Catalytic performances of various photocatalysts.	18
Table S4 Effect of scavengers on benzylamine oxidation catalyzed by Pb-HBT	19
References	20

General Information.

4-Hydroxybenzenethiol and *p*-benzoquinone (BQ) were purchased from J&K Scientific Ltd. 1,4-Benzenendithiol, benzylamine, 4-methylbenzylamine, 4methoxybenzylamine, 4-tert-butylbenzylamine, 4-bromobenzylamine, 4fluorobenzylamine, 4-trifluoromethylbenzylamine, 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO), 2,2,6,6-tetramethylpiperidine (TEMP) and beta-carotene were purchased from Innochem Science & Technology Co., Ltd. Pb(CH₃COO)₂·3H₂O was purchased from Acros Organic of Thermo Fisher Scientific Co., Ltd.

Synthesis of Pb-HBT.

4-Hydroxybenzenethiol (0.2524 g, 2 mmol) was dissolved in 40 mL degassed H₂O under argon atmosphere. Then, Pb(CH₃COO)₂·3H₂O (0.3793 g, 1 mmol) was added. The mixture was heated at 120 °C for 24 h. The solid was collected by filtration and washed with H₂O, methanol, diethyl ether. After drying under vacuum at 60 °C for 12 h, the product was obtained as black brown solid (> 90% yield).

Synthesis of Pb-BDT.

1,4-Benzenendithiol (0.142 g, 1 mmol) was suspended in 40 mL degassed H_2O under argon atmosphere. Then, Pb(CH₃COO)₂·3H₂O (0.19 g, 0.5 mmol) was added. The mixture was heated at 85 °C for 24 h. The solid was collected by filtration and washed with H_2O , methanol, diethyl ether. After drying under vacuum at 60 °C for 12 h, the product was obtained as brown solid (40-50% yield).

Photocatalytic oxidation of benzylamine.

5 mg photocatalyst was added to a 50 mL round-bottom flask, then 5 mL acetonitrile and 0.5 mmol substrate were added in sequence. The mixture was stirred in air for 30 min. After sealed by a rubber stopper, the reaction system was irradiated by a 300 W Xe lamp ($350 < \lambda < 780$ nm, Aulight CEL-HX, Beijing) for desired time while cooling with circulating water device. The mixed product was analyzed by ¹H nuclear magnetic resonance (¹H NMR). The conversion (conv.), selectivity (select.) and production rate were calculated from the integration of ¹H-NMR peaks using 1,3,5-trioxane as an internal standard.

Photoelectrochemical test.

3 mg of the photocatalyst was suspended in a mixture of 140 uL ethanol and 10 uL 5 % Nafion solution. The mixture system was sonicated for 30 min and transferred to a piece of 1 cm² indium-tin oxide (ITO) in batches to prepare working electrodes. The photoelectrochemical measurement was carried out at electrochemical workstation (CHI660E, Chenhua Instrument, Shanghai, China). A three-electrode system with the photocatalyst-coated ITO as the working electrode, 1 cm² Pt net as the counter electrode and saturated Ag/AgCl as a reference electrode was used. 0.5 M Na₂SO₄ solution was used as electrolyte to conduct the photoelectrochemical test.

Quenching experiment.

The quenching experiment was the same as photocatalytic oxidation of benzylamine experiment in addition to 2 equivalents of scavengers (beta-carotene and *p*-benzoquinone) were added.

Electron spin resonance (ESR) experiment.

2 mg of catalyst was added to 2 mL acetonitrile in a 50 mL round-bottom flask under dark condition. After stirring in air for 30 min, the mixture was mixed with 10 μ L trapping agent of TEMP or DMPO. Then the mixture was light-illuminated at room temperature and analyzed by Bruker ELEXSYS II E500.

Structure solving and refinement method.

The Pb-HBT (HBT = 4-hydroxylbenzenethiol) structure was solved from powder XRD pattern of the as prepared sample, recorded on a high-resolution X-ray powder diffractometer (Rigaku SmartLab 9KW, λ (Cu K α 1) = 1.540593 Å) with Debye-Scherrer transmission geometry in 2 θ ranging from 4° to 120°. The indexing process was performed by EXPO2014¹ using the program N-TREOR09.² A monoclinic unit cell with a = 15.12 Å, b = 5.20 Å, c = 7.63 Å, $\beta = 95.54^{\circ}$, V = 597.37 Å³ was obtained with figure of merit M₂₀ = 76.0 from the first 23 XRD peaks in the 2 θ range of 3° to 40°. The initial lattice parameters were refined by le Bail algorithm using Jana2006.³ Background, zero-point, profile shape and asymmetry parameters were refined together to get the profile fitting converged with GOF = 0.76, Rp = 4.99, Rwp = 6.78. The space group was determined as P2₁/c based on symmetric extinction calculation. The structure was solved with direct method using Super flip program.⁴ The final Rietveld refinement with involving the coordination parameters and thermal factors of Pb, S, O and C atoms was performed with Jana2006³ and converged with GOF = 1.00, Rp = 6.85%, Rwp = 9.52%.

The Pb-BDT (BDT = benzene-1,4-dithiol) structure was solved from powder XRD pattern of the as prepared sample, recorded on a Debye-Scherrer transmission geometry by high resolution X-ray powder diffractometer (Rigaku SmartLab 9KW, λ (Cu K α 1) = 1.540593 Å) with 2 θ ranging from 5° to 120°. The indexing process was performed by EXPO2014¹ using the program N-TREOR09.² A monoclinic unit cell with a = 7.48 Å, b = 5.21 Å, c = 17.46 Å, β = 93.38°, V = 678.83 Å³ was obtained with figure of merit M₂₀ = 49.0 from the first 23 XRD peaks in the 2 θ range of 5° to 40°. The initial lattice parameters were refined by le Bail algorithm using Jana2006.³ Background, zero-point, profile shape and asymmetry parameters were refined together to get the profile fitting converged with GOF = 0.73, Rp = 2.23, Rwp = 2.98. The space group was determined as P2₁/c based on symmetric extinction calculation. The structure was solved with direct method using Super flip program.⁴ The final Rietveld refinement with involving the coordination parameters and thermal factors of Pb, S, and C atoms was performed with Jana2006³ and converged with GOF = 0.88, Rp = 2.69%, Rwp = 3.58%.

Characterizations.

The scanning electron microscopy (SEM) and SEM-Energy-dispersive X-ray spectroscopy (SEM-EDS) images were obtained by Toshiba SU8020 SEM. High-resolution transmission electron microscopy (HRTEM) images were obtained by Themis 300. TEM-EDS images were obtained by JEM 2100F (JEOL) TEM with an accelerated voltage of 200 kV. The contents of C, H and S were analyzed by Flash EA 1112 (Thermo Fisher Scientific). The S/Pb ratio was confirmed by EPMA (JEOL, JXA-8,100). Fourier transform infrared spectroscopy (FT-IR) was obtained at a TENSOR-27 spectrometer (Bruker). Raman spectra were recorded using a LabRAM HR Evolution

(HORIBA) Raman spectrometer with the excitation wavelength of 532 nm at room temperature. X-ray photoelectron spectroscopy (XPS) was performed by AXIS Ultra-DLD ultrahigh vacuum photoemission spectroscopy system (Kratos Co.). Thermogravimetric analysis (TGA) was carried out by a TGA Q500 instrument with a heating rate of 10 °C·min⁻¹ under a nitrogen flow. Ultraviolet-visible diffused reflectance spectra (UV-Vis DRS) were collected with an UV-2000 (SHIMADZU) spectrophotometer at room temperature. Photoluminescence (PL) spectra were recorded at room temperature with a Hitachi F-4600 fluorescence spectrophotometer with the excitation wavelength of 390 nm. ESR spectra were collected on a Bruker ELEXSYS II E500 spectrometer.

Fig. S1 Amplified image of PXRD pattern of Pb-HBT in the 20 range of 10° to 80°.

Fig. S2 Amplified image of PXRD pattern of Pb-BDT in the 20 range of 15° to 80°.

Fig. S3 Crystal structure of Pb-BDT: (a) Coordination environments of Pb. (b, c) Pb-S 2D networks. (d) Extended structure of Pb-BDT.

Fig. S4 SEM-EDS images of Pb-HBT.

Fig. S5 SEM-EDS images of Pb-BDT.

Fig. S8 Raman spectrum of Pb-HBT.

Fig. S9 FT-IR spectrum of Pb-HBT.

Fig. S10 Raman spectra of BDT and Pb-BDT.

Fig. S11 FT-IR spectrum of Pb-BDT.

Fig. S12 (a) The full XPS spectrum, (b) S 2p XPS spectrum and (c) Pb 4f XPS spectrum of Pb-HBT. (d) The full XPS spectrum, (e) S 2p XPS spectrum and (f) Pb 4f XPS spectrum of Pb-BDT.

Fig. S13 TGA curves of Pb-HBT and Pb-BDT.

Fig. S14 Calculated band structure of Pb-HBT.

Fig. S15 Calculated band structure of Pb-BDT.

Scheme S1 Proposed reaction mechanism for the photocatalytic oxidation of benzylamine over the Pb-HBT.

Empirical formula	$PbC_{12}S_2O_2H_{10}$	PbC ₆ S ₂ H ₄			
Formula weight	457.52	347.41			
Temperature, K	293	293			
Wavelength, Å	1.540593	1.540593			
Crystal system	Monoclinic	Monoclinic			
space group	P21/c	P21/c			
<i>a,</i> Å	15.1207	7.4789(7)			
<i>b,</i> Å	5.2004	5.2068(5)			
<i>c,</i> Å	7.6325	17.4623(16)			
<i>β</i> , °	95.5358	93.3828(19)			
Volume, ų	597.367	678.83(11)			
Z	2	4			
Calculated density, Mg/m ³	2.544	3.399			
θ range for data collection, °	4 to 120	5 to 120			
Refinement method	Rietveld	Rietveld			
GOF	1.00	0.88			
Rp, %	6.85	2.69			
Rwp, %	9.52	3.58			

Table S1 Crystallographic data of Pb-HBT and Pb-BDT.

	Elements	C (wt%)	H (wt%)	S (wt%)
	Found	31.44	2.23	14.13
PD-HBI -	Calculated	31.50	2.20	14.01
Pb-BDT -	Found	21.00	1.26	18.98
	Calculated	20.74	1.16	18.46

Table S2 Element analysis data of Pb-HBT and Pb-BDT.

Catalysts	Conditions	Time (h)	Conv. (%)	Select. (%)	Production rate of N- benzylbenzaldimin e (umol·g ⁻¹ ·h ⁻¹)	Ref.
TiO ₂ (Degussa P25) (10 mg)	benzylamine (0.1 mmol), CH₃CN (5 mL), air (1 atm). 100 W Hg lamp (λ ≥ 300 nm)	9	99	85	467.5	5
HNb₃O ₈ NS (20 mg)	benzylamine (0.25 mmol), CH ₃ CN (10 mL), air, 300 W Xe lamp (λ > 420nm)	6	95.0	98.9	978.7	6
NH ₂ -MIL-125(Ti) (5 mg)	benzylamine (0.1 mmol), CH ₃ CN (2.0 mL), saturated O ₂ , 300 W Xe lamp (420 < λ < 800 nm)	12	73.0	86.0	523.2	7
n-NH2-MIL-125 (10 mg)	benzylamine (0.2 mmol), MeCN (4 mL), air, 25 °C, 300 W Xe lamp (350 < λ < 780 nm).	9	98.5	99	1083.5	8
Cd(dcbpy) (10 mg)	benzylamine (0.48 mmol), DMF (5 ml), air, 300 W Xe lamp (350 < λ < 780 nm)	7	99.1	>99	3397.7	9
PCN-222 (Zr-MOF) (5 mg)	benzylamine (0.1 mmol), CH₃CN (3 mL), air, 100 mW cm ⁻² Xe lamp (λ ≥ 420 nm).	1	100	100	10000.0	10
Pb-BDT (5 mg)	benzylamine (0.5 mmol), CH ₃ CN (10 mL), air, 300 W Xe lamp (350 < λ < 780 nm)	10	100	96.8	4838.0	This work
Pb-HBT (5 mg)	benzylamine (0.5 mmol), CH ₃ CN (10 mL), air, 300 W Xe lamp (350 < λ < 780 nm)	9	100	90.2	5010.6	This work

Table S3 Catalytic performances of various photocatalysts.

Scavengers	Quenching group	Conv. (%) ^[b]	Select. (%) ^[b]		
beta-carotene	¹ O ₂	67.5	100.0		
BQ	02	94.6	98.5		

Table S4 Effect of scavengers on benzylamine oxidation catalyzed by Pb-HBT.^[a]

^[a]Reaction conditions: 5 mg catalyst, 5 mL acetonitrile, 0.5 mmol benzylamine, 2 equivalents of scavenger, 9 h, 300 W Xe lamp ($350 < \lambda < 780$ nm). ^[b] Conv. and Select. were determined by ¹H NMR.

The conversion of benzylamine at 9 h decreases from 100% to 67.5% with betacarotene as a scavenger to capture ${}^{1}O_{2}$, revealing that ${}^{1}O_{2}$ is a reactive oxygen species (ROS) for the photocatalytic oxidation of benzylamine. In contrast, the conversion of benzylamine at 9 h only decreases to 94.6% when BQ as a scavenger to capture $O_{2}^{\bullet-}$. These results suggest that the main ROS in the photocatalytic reactions is ${}^{1}O_{2}$.

References

- 1 A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero and A. Falcicchio, *J. Appl. Crystallogr.*, 2013, **46**, 1231–1235.
- 2 A. Altomare, G. Campi, C. Cuocci, L. Eriksson, C. Giacovazzo, A. Moliterni, R. Rizzi and P.-E. Werner, *J. Appl. Crystallogr.*, 2009, **42**, 768–775.
- 3 V. Petříček, M. Dušek and L. Palatinus, Z. Krist-Cryst. Mater., 2014, 229, 345-352.
- 4 L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786–790.
- 5 X. Lang, H. Ji, C. Chen, W. Ma and J. Zhao, *Angew. Chem., Int. Ed.*, 2011, **50**, 3934–3937.
- J. Chen, H. Wang, Z. Zhang, L. Han, Y. Zhang, F. Gong, K. Xie, L. Xu, W. Song and S.
 Wu, J. Mater. Chem. A, 2019, 7, 5493–5503.
- 7 D. Sun, L. Ye and Z. Li, *Appl. Catal.*, *B*, 2015, **164**, 428–432.
- X. Tan, J. Zhang, J. Shi, X. Cheng, D. Tan, B. Zhang, L. Liu, F. Zhang, B. Han and L. Zheng, *Sustain. Energy. Fuels*, 2020, **4**, 2823–2830.
- J. Shi, J. Zhang, T. Liang, D. Tan, X. Tan, Q. Wan, X. Cheng, B. Zhang, B. Han, L. Liu,
 F. Zhang and G. Chen, ACS Appl. Mater. Inter., 2019, 11, 30953–30958.
- 10 C. Xu, H. Liu, D. Li, J. H. Su and H. L. Jiang, *Chem. Sci.*, 2018, **9**, 3152–3158.